• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHAI Hua-you, ZHANG Dian-ji, LU Hai-lin, YANG Dian-sen, ZHOU Chun-mei. Behavior of Rayleigh waves in layered saturated porous media using thin-layer method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1132-1141. DOI: 10.11779/CJGE201506020
Citation: CHAI Hua-you, ZHANG Dian-ji, LU Hai-lin, YANG Dian-sen, ZHOU Chun-mei. Behavior of Rayleigh waves in layered saturated porous media using thin-layer method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1132-1141. DOI: 10.11779/CJGE201506020

Behavior of Rayleigh waves in layered saturated porous media using thin-layer method

More Information
  • Received Date: July 15, 2014
  • Published Date: June 18, 2015
  • Frequency behavior of Rayleigh waves in layered saturated poroelastic media is improtant for engineering geophysical prospecting and inversion of soil properties. The frequency equation of Rayleigh waves can be solved using the root searching algorithms in the conventional analysis method of the transfer or stiffness matrix. However, these algorithms are time-consuming in the complex domain and the root convergence is often poor. In this study, a rigid base is set at a certain depth of the half space which is estimated from the interested wavelength and the layers are discretized into a group of thin layers. The thin-layer model is then established to study the propagation behavior of Rayleigh waves in saturated poroelastic layered media under the plane strain conditions. In this model, the root searching problem is converted into the eigenvalue and eigenvector problem of matrices. The eigenvalues corresponding to the modes of Rayleigh waves can be sifted out from the calculated ones according to the attenuation of Rayleigh waves along depth. The frequency behavior, pore pressure and skeleton displacements of Rayleigh waves along depth can be calculated from the sifted eigenvalues and eigenvectors. The model developed is validated by comparing the numerical and the analytical results in the saturated poroelastic half space. The model is then used to study the frequency behavior of Rayleigh waves in several layered saturated porous half spaces. The method also provides some guidelines for investigating Rayleigh waves in layered media with more complex dynamic constitutive models.
  • [1]
    赵海波, 陈树民, 李来林, 等. 流体饱和度对Rayleigh 波 传播影响研究[J]. 中国科学 (物理学力学天文学), 2012, 42(2): 148–155. (ZHAO Hai-bo, CHEN Shu-min, LI Lai-lin, et al. Influence of fluid saturation on Rayleigh wave propagation[J]. Scientia Sinica (Physica Mechanica & Astronomica), 2012, 42(2): 148–155. (in Chinese))
    [2]
    KAREL N D. Multi-component acoustic characterization of porous media[D]. Delf: Technische Universiteit Delft, 2011.
    [3]
    DERESIEWICS H. The effect of boundaries on wave propagation in a liquid-filled porous solid: IV. Surface waves in a half-space[J]. Bulletin of the Seismological Society of America, 1962, 52(3): 627–638.
    [4]
    FENG S, JOHNSON D L. High-frequency acoustic properties of a fluid/porous solid interface, I. New surface mode[J]. Journal of the Acoustical Society of America, 1983, 73(3): 906–914.
    [5]
    ALBERS B. Porous media: modeling and application to wave propagation[M]. Graz: Course at the Technical University of Graz, 2008.
    [6]
    夏唐代, 陈龙珠, 吴世明, 等. 半空间饱和土中瑞利波特性 [J]. 水利学报, 1998, 10(2): 47–53. (XIA Tang-dai, CHEN Long-zhu, WU Shi-ming, et al. Characteristics of Rayleigh waves in a saturated half-space soil[J]. Journal of Hydraulic Engineering, 1998, 10(2): 47–53. (in Chinese))
    [7]
    陈龙珠, 黄秋菊, 夏唐代. 饱和地基中瑞利波的弥散特性. 岩土工程学报, 1998, 20(3): 6–9. (CHEN Long-zhu, HUANG Qiu-ju, XIA Tang-dai. Dispersion of Rayleigh wave in a saturated soil ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 6–9. (in Chinese))
    [8]
    黄茂松, 李进军. 饱和多孔介质土动力学理论与数值解法 [J]. 同济大学学报(自然科学版), 2004, 32(7): 851–856. (HUANG Mao-song, LI Jin-jun. Dynamics of fluid-saturated porous media and its numerical solution[J]. Journal of Tongji University (Natural Science), 2004, 32(7): 851–856. (in Chinese))
    [9]
    GERASIK V. Energy transport in saturated porous media[D]. Waterloo: the University of Waterlo, 2011.
    [10]
    PHILIPPACOPOULOS A J. Waves in a partially saturated layered half-space: Analytic formulation[J]. Bulletin of the Seismological Society of America, 1987, 77(5): 1838–1853.
    [11]
    DEGRANDE G, ROECK G D, BROECK P V D, et al. Wave propagation in layered dry, saturated and unsaturated poroelastic media[J]. International Journal of Solids and Structures, 1998, 35(34/35): 4753–4778.
    [12]
    夏唐代, 颜可珍, 孙鸣宇. 饱和土层中瑞利波的传播特性. 水利学报, 2004(11): 1–5. (XIA Tang-dai, YAN Ke-zhen, SUN Ming-yu. Propagation of Rayleigh wave in saturated soil layer[J]. Journal of Hydraulic Engineering, 2004(11): 1-5. (in Chinese))
    [13]
    LU L Y, ZHANG B X. Analysis of dispersion curves of Rayleigh waves in the frequency-wavenumber domain [J]. Canadian Geotechnical Journal, 2004, 41(4): 583–598.
    [14]
    凡友华, 刘家琦, 肖柏勋. 计算瑞利波频散曲线的快速矢 量算法[J]. 湖南大学学报 (自然科学版), 2002, 29(5): 25– 30. (FAN You-hua, LIU Jia-qi, XIAO Bai-xun. Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves[J]. Journal of Hunan University (Natural Sciences Edition), 2002, 29(5): 25–30. (in Chinese))
    [15]
    夏唐代, 陈云敏, 吴世明. 匀质软夹层地基瑞利波弥散特 性[J]. 振动工程学报, 1993, 6(1): 42–50. (XIA Tang-dai, CHEN Yun-min, WU Shi-ming. Rayleigh wave dispersion in soil profiles where a softer layer is trapped between harder layers[J]. Journal of vibration Engineering, 1993, 6(1): 42– 50. (in Chinese))
    [16]
    KAUSEL E, ROЁSSET J M. Stiffness matrices for layered soils[J]. Bulletin of the Seismological Society of America, 1981, 71(6): 1743–1746.
    [17]
    KAUSEL E. The thin-layer method in seismology and earthquake engineering[M]// Southampton: WIT Press, 2001.
    [18]
    CHAI H Y, PHOON K K, WEI C F, LU Y F. Analysis of effects of active sources on observed phase velocity based on the thin-layer method[J]. Journal of Applied Geophysics, 2011, 73(1): 49–58.
    [19]
    柴华友, 白世伟, 刘明贵, 等. 瑞利波特性刚度矩阵研究 [J]. 岩土力学, 2006, 27(2): 209–213. (CHAI Hua-you, BAI Shi-wei, LIU Ming-gui, et al. Analysis of behaviour of Rayleigh waves by stiffness matrix method[J]. Rock and Soil Mechanics, 2006, 27(2): 209–213. (in Chinese))
    [20]
    柴华友, 韦昌富. 刚度缓变系统中瑞利波特性[J]. 岩土力 学, 2009, 30(9): 2545–2551. (CHAI Hua-you, WEI Chang-fu. Behavior of Rayleigh waves in media with smoothly varying stiffness profile[J]. Rock and Soil Mechanics, 2009, 30(9): 2545–2551. (in Chinese))
    [21]
    柴华友, 韦昌富, 白世伟. 表面波有效相速度的近似分析 方法[J]. 岩土力学, 2008, 29(1): 87–93. (CHAI Hua-you WEI Chang-fu, BAI Shi-wei. Approximate approach to analyzing effective velocity of surface waves[J]. Rock and Soil Mechanics, 2008, 29(1): 87–93. (in Chinese))
    [22]
    柴华友, 张电吉, 韦昌富, 等. 层状地基中表面波有效相 速度[J]. 岩土工程学报, 2009, 31(6): 892–898. (CHAI Hua-you, ZHANG Dian-ji, WEI Chang-fu, LU Ying-fa. Effective phase velocity of surface waves in layered soil media[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 892–898. (in Chinese))
    [23]
    柴华友, 韦昌富, 张电吉, 等. 分层参数对表面波有效相 速度影响[J]. 水利学报, 2010, 41(6): 677–683. (CHAI Hua-you, WEI Chang-fu, ZHANG Dian-ji, et al. Effects of soil parameters on effective phase velocity of surface waves[J]. Journal of Hydraulic Engineering, 2010, 41(6): 677-683. (in Chinese))
    [24]
    CHAI H Y, CUI Y J, WEI C F. A parametric study of effective phase velocity of surface waves in layered media[J]. Computers and Geotechnics, 2012, 44: 176–184.
    [25]
    NOGAMI T, KAZAMA M. Dynamic response analysis of submerged soil by thin layer element method[J]. Soil Dynamics and Earthquake Engineering, 1992, 11(1): 17–26.
    [26]
    NOGAMI T, KAZAMA M. Thin layer element method for dynamic soil-structure interaction analysis of axi-symmetric structure in submerged soil[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(5): 337–351.
    [27]
    BOUGACHA S, TASSOULAS J L, ROЁSSET J M. Analysis of foundations on fluid-filled poroelastic stratum[J]. Journal of Engineering Mechanics, 1993, 119(8): 1632–1648.
    [28]
    BOUGACHA S, TASSOULAS J L. Seismic analysis of gravity dams I: modelling of sediments[J]. Journal of Engineering Mechanics, 1991, 117(8): 1826–1837.
    [29]
    BOUGACHA S, TASSOULAS J L. Dam-water-sedimentrock systems: seismic analysis[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(6): 680–693.
    [30]
    SENJUNTICHAI T, RAJAPAKSE R K N D. Exact stiffness method for quasi-statics of a multi-layered poroelastic medium[J]. International Journal of Solids and Structures, 1995, 32(11): 1535–1553.
    [31]
    DEGRANDE G, ROECK G D. An absorbing boundary condition for wave propagation in saturated poroelastic media part I: formulation and efficiency evaluation[J]. Soil Dynamics and Earthquake Engineering, 1993, 12(7): 411– 421.

Catalog

    Article views (357) PDF downloads (555) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return