• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BAO Cheng-gang, TONG Jun, DING Jin-hua. Reasonable selection of rheological parameters of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 410-418. DOI: 10.11779/CJGE201503003
Citation: BAO Cheng-gang, TONG Jun, DING Jin-hua. Reasonable selection of rheological parameters of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 410-418. DOI: 10.11779/CJGE201503003

Reasonable selection of rheological parameters of geosynthetics

More Information
  • Received Date: June 02, 2014
  • Published Date: March 23, 2015
  • The influence of rheological properties of geosynthetics in engineering should be considered properly. For this purpose, a creep reduction factor is considered in the design tensile strength. However, the selected value of this factor is too conservative in the current time. Based on the test results, the stress level applied on geosynthetic materials is the critical factor for the influence of creep on rupture. Whereas, according to the monitoring data from international and domestic reinforced structures, the stress level for geosynthetics reinforcement is mostly quite low, and it is only several percent of the design tensile strength. The largest values of stress and deformation in reinforcement appear at the end of construction time. Moreover, some creep tests are performed under the condition without any lateral pressure on test specimen, and the influence of creep will be enlarged. Otherwise, the relaxation property should be concerned for reinforced structures, and it will reduce the influence of creep. Finally, the reasonable value of creep reduction factor is suggested.
  • [1]
    包承纲, 丁金华, 汪明元. 极限平衡理论在加筋土结构设计中应用的评述[J]. 长江科学院院报, 2014, 31(3): 1-10. (BAO Cheng-gang, DING Jin-hua, WANG Ming-yuan. Review on limited balance theory applied in the design of reinforced soil structures[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 1-10. (in Chinese))
    [2]
    FONYO B, SACCHETTI A. Design software comparison of reinforced steep slopes[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 1819-1822.
    [3]
    BRÄU G, HEROLD A, LÜKING J, et al. EBGEO 2010-Recommendation for reinforcement with geo- synthetics[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 233-236.
    [4]
    TATSUOKA F, KOSEKI J, TATEYAMA M. Introduction to Japanese codes for reinforced soil design[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 247-258;
    [5]
    MONTRI D. A case study of reinforced slope in Thailand: Lumpang-Lamphun highway[C]// 8th International Con- ference on Geosynthetics. Millpress, Rotterdam, 2006: 1109-1112
    [6]
    李广信. 关于土工合成材料加筋设计的若干问题[J]. 岩土工程学报, 2013, 35(4): 605-610. (LI Guang-xin. Some problems in design of geosynthetic-reinforced soil structures[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 605-610. (in Chinese))
    [7]
    MICHAEL Dobie, 何 波. 加筋土结构设计方法及设计安全冗余分析[J]. 长江科学院院报, 2014, 31(3): 115-121. (MICHAEL D, SINDY He. Reinforced soil retaining walls: an outline of design methods and sources of conservatism[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 115-121. (in Chinese))
    [8]
    匡希龙, 周志刚, 王桂尧. 基于特种筋材蠕变试验预应变加筋法应用研究及计算模型[J]. 岩石力学与工程学报, 2007, 26(A01): 3107-3113. (KUANG Xi-long, ZHOU Zhi-gang, WANG Gui-yao. Application study and calculation model of prestrain reinforcement technique based on creep experiment of geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(A01): 3107-3113. (in Chinese))
    [9]
    蔡德钩, 史存林, 张千里, 等. 基于格栅蠕变的桩网支承路基中加筋网垫受力变形特性分析[C]// 土工合成材料加筋–机遇与挑战. 青岛, 2009: 177-182. (CAI De-gou, SHI Cun-lin, ZHANG Qian-li, et al. Behavior analysis of deformation for reinforced layer with geogrids in a piled embankment based on creep property[C]// Geosynthetics Reinforcement-Chance & Challenge. Qingdao, 2009: 177-182. (in Chinese))
    [10]
    Müller-Rochholz Jochen, Retzlaff Jan. Long term performance of geosynthetics[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 455-462.
    [11]
    YAO S S, HSUAN Y G. Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geo- grids[J]. Geotextile and Geomenbranes, 2010, 28(5): 400-421.
    [12]
    王 钊. 土工织物的拉伸蠕变特性和预应力加筋堤[J]. 岩土工程学报, 1992, 14(2): 12-20. (WANG Zhao. Tensile and creep properties of geotextiles and pretensioned reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(2): 12-20. (in Chinese))
    [13]
    丁金华, 周武华. HDPE土工格栅在有约束条件下蠕变特性的试验研究[J]. 长江科学院院报, 2012, 29(4): 49-51. (DING Jin-hua, ZHOU Wu-hua. Creep property of HDPE geogrid with sand confinement[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(4): 49-51. (in Chinese))
    [14]
    丁金华, 包承纲, 陈仁朋. 加筋土结构中筋材抗拉强度的取值方法研究[J]. 水利学报, 2012, 43(12): 1464-1469. (DING Jin-hua, BAO Cheng-gang, CHEN Ren-peng. A method to determine the design value of reinforcement tensile strength in reinforced soil structure[J]. Journal of Hydraulic Engineering, 2012, 43(12): 1464-1469. (in Chinese))
    [15]
    TONG J, GONG B, LIU J. Experimental study and prediction on the long-term creep properties for geogrids at different temperatures[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 873-876.
    [16]
    BUENO B S. Long-term performance of geosynthetics[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 439-453.
    [17]
    杨广庆, 杜学玲, 周乔勇, 等. 土工格栅加筋石灰土挡墙工程特性试验研究[J]. 岩土工程学报, 2010, 32(12): 1904-1909. (YANG Guang-qing, DU Xue-ling, ZHOU Qiao-yong, et al. Field tests on behaviors of geogrid- reinforced lime treated soil retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1904-1909. (in Chinese))
    [18]
    何其武, 陈丽丽, 王旭龙. 斜坡地基土工格栅加筋土高边坡现场试验研究[C]// 土工合成材料加筋–机遇与挑战. 青岛, 2009: 368-377. (HE Qi-wu, CHEN Li-li, WANG Xu-long. In-situ tests for a reinforced high-slope with geogrids at tilted foundation[C]// Geosynthtics Reinforcement- Chance & Challenge. Qingdao, 2009: 368-377. (in Chinese))
    [19]
    ASCHAUER F, WU W, OBERREITER K. Investigation of the behavior of geosynthetic/soil systems in reinforced-soil structures[C]// 8th International Conference on Geosynthetics. Millpress, Rotterdam, 2006: 1049-1052.
    [20]
    KONGKITKUL W, TATSUOKA F, HIRAKAWA D, et al. Post-construction tensile load and strain behaviour of geogrids arranged in full-scale high walls[C]// 9th International Conference on Geosynthetics. Brazil, 2010, 1605-1610.
    [21]
    SAYÃO A S F J, BECKER L B, NUNES A L L S, et al. Behavior of a geogrid reinforced soil wall built with clayey silt[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 1685-1688.
    [22]
    HERLE V. Prediction and performance of reinforced soil structures[C]// 8th International Conference on Geosynthetics. Millpress, Rotterdam, 2006: 1113-1116.
    [23]
    胡汉兵, 姜志全, 蔡汉利. 土工格栅施工损伤现场足尺试验研究[J]. 岩土工程学报, 2012, 34(5): 906-910. (HU Han-bing, JIANG Zhi-quan, CAI Han-li. Full-scale field tests on installation damage of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 906-910. (in Chinese))
  • Cited by

    Periodical cited type(22)

    1. 卢汉青,包卫星,陈锐,郭强,尹严. 基于核磁共振技术的冻融板岩损伤特性试验研究. 地下空间与工程学报. 2025(01): 78-86+99 .
    2. 贾朝军,庞锐锋,俞隽,雷明锋,李忠. 基于离散元的岩石冻融损伤劣化机制研究. 岩土力学. 2024(02): 588-600 .
    3. 赵越,司运航,张译丹,赵京禹. 水化-冻融耦合条件下大理岩蠕变损伤本构模型. 吉林大学学报(地球科学版). 2024(01): 231-241 .
    4. 樊赖宇,吴志军,储昭飞,翁磊,王智洋,刘泉声,陈结. 动态冲击下红砂岩蠕变特性及损伤本构模型. 岩土力学. 2024(06): 1608-1622 .
    5. 刘文博,张树光,黄翔,刘轶品. 基于蠕变曲线对称的蠕变模型研究及参数敏感性分析. 煤炭科学技术. 2024(07): 48-56 .
    6. 宋勇军,操警辉,程柯岩,杨慧敏,毕冉,张琨. 砂岩冻结/解冻过程蠕变特性研究. 水文地质工程地质. 2024(06): 93-103 .
    7. 王波,任永政,田志银,马世纪,王军,黄万朋,王灵. 流变扰动条件下岩石微观损伤试验研究. 煤炭学报. 2024(S2): 852-861 .
    8. 杨志全,甘进,樊详珑,朱颖彦,杨溢,丁渝池. 岩石冻融损伤机理研究进展及展望. 防灾减灾工程学报. 2023(01): 176-188 .
    9. 赵志波. 冻融条件下隧道围岩单轴蠕变力学特性试验及本构模型. 黑龙江科技大学学报. 2023(02): 299-305 .
    10. 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究. 工矿自动化. 2023(05): 133-138+152 .
    11. 闫建兵,张小强,宋选民,王开,姜玉龙,岳少飞. 低围压条件下无烟煤三轴蠕变特性试验研究(英文). Journal of Central South University. 2023(05): 1618-1630 .
    12. 张卫泽,王琳庆,郭文重,陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究. 水文地质工程地质. 2023(04): 137-148 .
    13. 赵越,李磊,闫晗,肖万山,苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性. 吉林大学学报(地球科学版). 2023(04): 1195-1203 .
    14. 包卫星,卢汉青,郭强,尹严. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究. 工程地质学报. 2023(04): 1213-1224 .
    15. 王丹,冯子军,张子翔. 砂岩的三维非线性损伤蠕变特性. 矿业研究与开发. 2023(10): 139-144 .
    16. 付宏渊,段鑫波,史振宁. 冻融循环下粉砂质泥岩强度劣化特性及细观机理研究. 工程地质学报. 2023(06): 1833-1841 .
    17. 张进元. 冻融作用下公路块石路基损伤特性研究. 青海交通科技. 2023(06): 131-134 .
    18. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 .
    19. 唐志强,吉锋,许汉华,冯文凯,何萧. 豫南燕山期花岗岩蠕变特性及非线性蠕变损伤模型. 科学技术与工程. 2022(16): 6421-6429 .
    20. 尹彦波. 不同应变率下冻融损伤大理岩的动态压缩特性研究. 矿业研究与开发. 2022(08): 139-145 .
    21. 马志奇,杨小彬,刘腾辉,李志辉. 粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究. 矿业科学学报. 2022(06): 730-737 .
    22. 王飞,高明忠,邱冠豪,汪亦显,周昌台,王之禾. 初始损伤–载荷–冻融作用下红砂岩的孔隙结构及力学特性. 工程科学与技术. 2022(06): 194-203 .

    Other cited types(43)

Catalog

    Article views (317) PDF downloads (344) Cited by(65)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return