• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Zi-sheng. Field tests on negative skin friction of steel pipe piles in high backfilling soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 337-342. DOI: 10.11779/CJGE201502018
Citation: LIU Zi-sheng. Field tests on negative skin friction of steel pipe piles in high backfilling soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 337-342. DOI: 10.11779/CJGE201502018

Field tests on negative skin friction of steel pipe piles in high backfilling soils

More Information
  • Received Date: April 08, 2014
  • Published Date: March 01, 2015
  • For the piles in large-area high fill soft soils, rubble mound may cause negative skin friction on piles because of the settlement of backfilling soils. To grasp the influence of the negative skin friction, field tests are carried out on a steel pipe pile of Yangshan Port of Shanghai. The knowledge on key parameters such as distribution, magnitude and temporal variation of the negative skin friction of the pile, location of neutral point and downdrag force is acquired. The results indicate that: (1) the time effect of the negative skin friction on the pile is obvious. The time for the negative skin friction of soft soils to reach its peak is shorter, while that for the good soils with large embedded depth is longer; (2) the measured negative skin friction coefficient of rubble mound is up to 0.8, while the coefficient of silty soft clay is only 0.04, the coefficients of other soils are in good agreement with the technical code of China; (3) in nearly nine months after rubble mound construction is completed, the down drag force of the pile continues to increase. The maximum downdrag force is up to 7740.4 kN, depth of the neutral point is between 0.62L ~ 0.68L, and the negative skin friction generated by the rubble mound is up to 184.4 kPa. Attention should be paid to the design of similar projects in the future, and appropriate measures should be taken to reduce the negative skin friction.
  • [1]
    JOHANNESSEN L J, BJERRUM L. Measurement of the compression of a steel pile to rock due to settlement of the surrounding clay[C]// Proceedings 6th International Conference on Soil Mechanics and Foundation Engineering. Montreal, 1965: 261-264.
    [2]
    BJERRUM L, JOHANNESSEN I J, EIDE O. Reduction of negative skin friction on steel piles to rock[C]// Proc 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 27-34.
    [3]
    BOZOZUK M. Downdrag measurement on 160-ft floating pipe test pile in marine clay[J]. Canadian Geotechnical Journal, 1972, 9(2): 127-136.
    [4]
    ENDO M, MINOU A, KAWASAKI T, et al. Negative skin friction acting on steel piles in clay[C]// Proc 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 85-92.
    [5]
    WALKER L K, DARVALL P L. Downdrag on coated and uncoated piles[C]// Proc 8th ICSMFE. Moscow, 1973: 257-262.
    [6]
    CLEMENTE F M. Downdrag on bitumen coated piles in a warm climate[C]// Proc 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 1981: 673-676.
    [7]
    BOZOZUK M. Bearing capacity of a pile preloaded by download[C]// Proc 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 1981: 631-636.
    [8]
    LEUNG C F, RADHAKRISHNAN R, TAN S A. Performance of precast driven piles in marine clay[J]. Journal of Geotechnical Engineering, 1991, 117(4): 637-657.
    [9]
    FELLENIUS B H, BROMS B B. Nagative skin friction for long piles driven in clay[C]// Proc 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 93-98.
    [10]
    FELLENIUS B H. Downdrag on piles in clay due to negative skin friction[J]. Canadian Geotechnical Journal, 1972, 9(4): 323-337.
    [11]
    FELLENIUS B H. Negative skin friction and settlement of piles[C]// Proceedings of Second International Seminar on Pile Foundations. Singapore, 1984: 28-30.
    [12]
    李光煜, 汪彬. 钢管桩负摩阻力及水平位移的测定[J]. 岩土力学, 1988, 9(2): 90-97. (LI Guang-yu, WANG-Bin. Determination of negative friction and horizontal displacement for steel pipe piles[J]. Rock and Soil Mechanics, 1988, 9(2): 89-98. (in Chinese))
    [13]
    马时冬. 桩身负摩阻力的现场测试与研究[J], 岩土力学, 1997, 18(1): 8-16. (MA Shi-dong. Study on the field measurement of negative friction of piles[J]. Rock and Soil Mechanics, 1997, 18(1): 8-16. (in Chinese))
    [14]
    赵锡宏, 张启辉, 张保良. 承受负摩擦力的桩基沉降计算的迭代法[J]. 岩土力学, 1999, 20(2): 17-21. (ZHAO Xi-hong, ZHANG Qi-hui, ZHANG Bao-liang. Iterative method for calculating the settlement of pile foundation with negative friction[J]. Rock and Soil Mechanics, 1999, 20(2): 17-21 .(in Chinese))
    [15]
    范正明, 甘德福, 陈孝培. 论桩的中和点和中性点的Gan-Chen模式求解法[J]. 水文地质工程地质, 2001, 28(5): 58-61. (FAN Zheng-ming, GAN De-fu, CHEN Xiao-pei. Analysis of Gan-Chen model solution method for neutral point and mid-point of pile[J]. Hydrogeology and Engineering Geology, 2001, 28(5): 58-61. (in Chinese))
    [16]
    李玲玲, 王立忠, 邢月龙. 大直径钻孔灌注桩负摩阻力试验研究[J]. 岩石力学与工程学报, 2009, 28(3): 583-590. (LI Ling-ling, WANG Li-zhong, XING Yue-long. Experimental research on negative skin friction of large-diameter bored piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 583-590. (in Chinese))
    [17]
    宫泽康生, 陶光华. 横滨市大黑码头桩基负摩擦的长期观测实验[J]. 港口工程, 1984, 1(4): 14-19. (MIYAZAWA Kousei, TAO Guang-hua. Long-term tests on negative skin friction on piles of Yokohama Daikoku Pier[J]. Harbour Engineering, 1984, 1(4): 14-19. (in Chinese))
    [18]
    JGJ94—2008 建筑桩基技术规范[S]. 2008. (JGJ94—2008 Technical code for building pile foundation[S]. 2008. (in Chinese))
  • Cited by

    Periodical cited type(23)

    1. 吴学震,夏亚歆,李大勇,游先辉,单宁康,肖贞科,陈祥. 新型劲性水泥土组合桩内界面抗剪强度试验研究. 岩土力学. 2025(02): 467-478 .
    2. 余少华,郑小晴,夏良利,方焘,罗如平,付丽,朱晓杰. 劲性复合管桩支护结构水平受力变形特性研究. 华东交通大学学报. 2025(01): 16-25 .
    3. 周佳锦,马俊杰,俞建霖,龚晓南,张日红. 静钻根植桩施工环境效应现场试验研究. 土木工程学报. 2024(03): 93-101 .
    4. 高鲁超,戴国亮,姚中原,张继生,王安辉,陈浩. 水泥土大直径单桩水平承载性能试验研究. 东南大学学报(自然科学版). 2024(01): 142-148 .
    5. 周佳锦,马俊杰,俞建霖,龚晓南,张日红. 静钻根植桩竖向承载性能现场试验研究. 岩土工程学报. 2024(03): 640-647 . 本站查看
    6. 胡海生,袁运涛. MC劲性复合桩在深厚砂层水利工程中的应用. 江苏水利. 2024(03): 37-40 .
    7. 高云凤,纠永志. 劲性复合桩桩筏基础竖向承载性能研究. 低温建筑技术. 2024(01): 101-104 .
    8. 曾章波,王夏,董明名. 泥炭质土层劲性复合桩承载性能试验研究. 贵州科学. 2024(02): 91-96 .
    9. 柳鸿博,戴国亮,周凤玺,龚志宇,陈智伟. 黏弹性非饱和土中劲性复合桩纵向动力响应分析. 岩土力学. 2024(05): 1365-1377+1387 .
    10. 苏刚,陈信升,李志越,戴国亮,邓亚光. 劲性复合桩承载性能现场试验研究. 甘肃科学学报. 2024(04): 76-82 .
    11. 张晓东,程子龙,包小华,沈俊,蘧树清,潘飞超. 竖向荷载作用下劲性复合桩承载能力研究. 广东土木与建筑. 2023(02): 11-14 .
    12. 蔡田余. 河道坡岸加固应用复芯劲性复合桩技术研究. 地下水. 2023(03): 306-309 .
    13. 刘晓鹏,苏学林,旦东,朱枫,吴志坚,王盛年. 软土场地航道近接开挖对既有桥梁桩基稳定性的影响. 科技和产业. 2023(19): 225-232 .
    14. 朱锐,周峰,陈廷柱,邓亚光. 劲性复合桩挤土效应及承载力作用机制研究. 岩土力学. 2023(12): 3577-3586 .
    15. 柳鸿博,戴国亮,张瑞玲. 水泥土加固对单桩侧向动力响应的影响机制分析. 岩土工程学报. 2023(S2): 177-182+228 . 本站查看
    16. 俞建霖,杨晓萌,周佳锦,徐山岱,龚晓南,赵新文. 砼芯水泥土桩复合地基工作性状研究. 中南大学学报(自然科学版). 2022(07): 2606-2618 .
    17. 缪宏兵. 劲性复合桩研究进展分析. 工程技术研究. 2022(20): 101-103 .
    18. 韦古强,何子睿,刘广东,胡从川,高鲁超. 水泥土复合单桩水平承载性能模型试验研究. 太阳能学报. 2022(12): 353-359 .
    19. 曹净,杜涛,余再西,郭鹏. 软土地基MPC劲性复合桩现场试验研究. 四川建筑科学研究. 2021(01): 61-68 .
    20. 王安辉,袁春坤,章定文,丁选明,刘维正,朱子超. 桩筏连接形式对劲芯复合桩地震响应影响试验研究. 中国公路学报. 2021(05): 24-36 .
    21. 王安辉,章定文,张艳芳. 砂土中水泥土复合管桩震动响应试验研究. 岩土工程学报. 2021(S2): 121-124 . 本站查看
    22. 梁善斋. 水泥土复合管桩竖向承载特性现场试验. 岩土工程学报. 2021(S2): 280-283 . 本站查看
    23. 洪俊青,包华,周威,夏胞刚,吴昌将. 基于m法的劲性复合桩单桩水平承载力计算方法. 南通大学学报(自然科学版). 2021(04): 78-86 .

    Other cited types(15)

Catalog

    Article views PDF downloads Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return