• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Zheng-zhao, XIAO Dong-kun, LI Cong-cong, WU Xian-kai, GONG Bin. Numerical study on strength and failure modes of rock mass with discontinuous joints[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2086-2095. DOI: 10.11779/CJGE201411015
Citation: LIANG Zheng-zhao, XIAO Dong-kun, LI Cong-cong, WU Xian-kai, GONG Bin. Numerical study on strength and failure modes of rock mass with discontinuous joints[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2086-2095. DOI: 10.11779/CJGE201411015

Numerical study on strength and failure modes of rock mass with discontinuous joints

More Information
  • Received Date: March 03, 2014
  • Published Date: November 19, 2014
  • Based on a microscopic statistical damage model, different failure criteria are introduced into a numerical code to simulate tensile breaking and compression shear failure of jointed rock subjected to uniaxial compression and biaxial compression. Influences of geometrical parameters of the joints and lateral stress on fracture patterns and mechanical behaviors are investigated. The results show that the whole failure modes consist of four types: planar failure, stepped failure, rotating-block failure and mixed failure. The planar failure and stepped failure are associated with high strengths and strains, whereas the rotational failure is associated with low strengths and strains. As the joint inclination increases, the peak strength and elastic modulus increase and then decrease. As the lateral stress increases, the failure areas expand from the middle to both ends and appreciably improve the strength, but the increasing level will reduce when the lateral stress continues to increase. The step angle of joints has great influence on the failure modes when =90°, and the failure mode changes from stepped failure to the rotational failure. The layer distance d has slight influence on the stepped failure and great influence on the rotational failure. The rock bridge length lr does not affect the transition of the failure mode, but it affects the peak strength and failure strain of both the planar failure and stepper failure. The results may provide guidance and reference to jointed rock engineering.
  • [1]
    李 宁, SWOBODA G. 当前岩石力学数值方法的几点思考[J]. 岩石力学与工程学报, 1997, 16(5): 502-505. (LI Ning, SWOBODA G. Discussion on the application of numerical methods to rock mechanics and engineering[J]. Chinese Journal of Rock Mechanics and Rock Engineering, 1997, 16(5): 502-505. (in Chinese))
    [2]
    JAEGER J, COOK N. Fundamentals of rock mechanics[M]. London: Chapman and Hall LTD, 1969: 53-108.
    [3]
    RAMAMURTHY T, ARORA V. Strength predictions for jointed rocks in confined and unconfined states[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1994, 31(1): 9-22.
    [4]
    LAJTAI E Z. Brittle fracture in compression[J]. International Journal of Fracture, 1974, 10(4): 525-536.
    [5]
    TIWARI R P. Point failure behavior of a rock mass under the influence of triaxial and true triaxial confinement[J]. Engineering Geology, 2006, 84(3/4): 112-129.
    [6]
    GERMANOVICH L N, SALGANIK R L, DYSKIN A V, et al. Mechanisms of brittle fracture of rocks with multiple pre-existing cracks in compression[J]. Pure Appl Geophys, 1994, 143(1/2/3): 117-149.
    [7]
    LIN P, ROBINA H C, WONG K T, et al. Multi-crack coalescence in rock-like material under uniaxial and biaxial loading[J]. Key Engineering Materials, 2000, 183(1): 809-814.
    [8]
    SAGONG M, BOBET A. Coalescence of multiple flaws in a rock-model material in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 229-241.
    [9]
    PRUDENCIO M, VAN SINT JAN M. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 890-902.
    [10]
    张志刚, 乔春生, 李 晓. 单节理岩体强度试验研究[J]. 中国铁道科学, 2007, 28(4): 34-39. (ZHANG Zhi-gang, QIAO Chun-sheng, LI Xiao. Experimental study on the strength of single joint rock mass[J]. China Railway Science, 2007, 28(4): 34-39. (in Chinese))
    [11]
    蒲成志, 曹 平, 赵延林, 等. 单轴压缩下多裂隙类岩石材料强度试验与数值分析[J]. 岩土力学, 2010, 31(11): 3661-3666. (PU Cheng-zhi, CAO Ping, ZHAO Yan-lin, et al. Numerical analysis and strength experiment of rock-like materials with multi-fissures under uniaxial compression[J]. Rock and Soil Mechanics, 2010, 31(11): 3661-3666. (in Chinese))
    [12]
    陈 新, 廖志红, 李德建. 节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 2011, 30(4): 781-789. (CHEN Xin, LIAO Zhi-hong, LI De-jian. Experimental study of effects of joint inclination angle and connectivity rate on strength and deformation properties of rock masses under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 781-789. (in Chinese))
    [13]
    汤明高, 许 强, 黄润秋, 等. 小湾水电工程6#山梁节理岩体高边坡3DEC分析[J]. 水文地质工程地质, 2006(3): 57-60. (TANG Ming-gao, XU Qiang, HUANG Run-qiu. 3DEC analysis on 6# high rock slope with joints in Xiaowan Hydropower Projec[J]. Hydrogeology & Engineering Geology, 2006(3): 57-60. (in Chinese))
    [14]
    朱道建, 杨林德, 蔡永昌. 柱状节理岩体压缩破坏过程模拟及机制分析[J]. 岩石力学与工程学报, 2009, 28(4): 716-724. (ZHU Dao-jian, YANG De-lin, CAI Yong-chang. Simulation of compressive failure process of columnar jointed rock mass and its failure mechanism analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4): 716-724. (in Chinese))
    [15]
    唐春安, 王述红, 傅宇方. 岩石破裂过程数值试验[M]. 北京: 科学出版社, 2003. (TANG Chun-an, WANG Shu-hong, FU Yu-fang. Numerical tests of rock failure process[M]. Beijing: Science Press, 2003. (in Chinese))
  • Related Articles

    [1]Mechanical behavior and mesoscopic failure mechanism of high-temperature granite under different cooling methods in Brazilian tensile tests[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241039
    [2]DENG Ming-jiang, CAI Zheng-yin, ZHU Xun, ZHANG Chen. Failure mechanism and reinforcement measures of shallow slopes of expansive soils in Northern Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 50-55. DOI: 10.11779/CJGE2020S2009
    [3]MA Yan, WANG Jia-ding, PENG Shu-jun, LI Bin. Deformation and failure mechanism of high sticking loess slope[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 518-528. DOI: 10.11779/CJGE201603016
    [4]WANG Lin-feng, CHEN Hong-kai, TANG Hong-mei. Mechanical mechanism of failure for anti-inclined rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 884-889.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LI Hong-wei. Deformation and failure mechanism of steeply dipping bedding high slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 146-151.
    [7]HUANG Zhiping, TANG Chunan, ZHU Wancheng, PANG Mingzhang. Numerical simulation on failure modes of rock bars under different wave lengths[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1048-1053.
    [8]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.
    [9]LIU Hongyuan, LIU Jianxin, TANG Chunan. Numerical simulation of failure process of overburden rock strata caused by mining excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 201-204.
    [10]Huang Jianan, Wang Sijing. Numerical Analysis of Fracture Mechanics for Rock Mass with Discrete Joints[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(3): 39-52.
  • Cited by

    Periodical cited type(14)

    1. 黄正均,武旭,郭国龙,马驰,张栋. 非贯通断续节理岩石剪切力学特性及破坏机理研究. 中国测试. 2025(02): 19-29+38 .
    2. 刘婷婷,曾乐乐,张超,李新平,杨婷,张腾胜. 节理分布形式对交叉节理岩体动态力学特性与破坏模式影响研究. 岩石力学与工程学报. 2024(01): 90-102 .
    3. 陈浩南,朱泽奇,庞鑫,万道春,夏禄清,张少军. 岩石卸荷的Mogi-Coulomb强度准则适用性研究. 力学与实践. 2024(03): 602-608 .
    4. 陈毅. 深埋硬岩隧道结构面对岩爆破坏特征的影响研究. 水电能源科学. 2024(07): 105-108+72 .
    5. 杜岩,张洪达,谢谟文,蒋宇静,李双全,刘敬楠. 大型危岩体崩塌灾害早期监测预警技术研究综述. 工程科学与技术. 2024(05): 10-23 .
    6. 孙杰龙,陈锐,李晓敏,邱明明,曹雪叶,王银. 单轴压缩下饱和裂隙红砂岩力学特性试验及PFC~(2D)模拟. 延安大学学报(自然科学版). 2024(04): 114-120 .
    7. 高美奔,李天斌,陈国庆,孟陆波,马春驰,张岩,阴红宇,钟雨奕. 基于岩石峰前起裂及峰后特征的脆性评价方法. 岩土工程学报. 2022(04): 762-768 . 本站查看
    8. 刘先林,范杰,朱觉文,李明智,朱星. 单轴压缩下岩桥脆性断裂的临界慢化特征. 水利水电技术(中英文). 2022(03): 166-175 .
    9. 王刚,宋磊博,刘夕奇,包春燕,吝曼卿,刘广建. 非贯通节理花岗岩剪切断裂力学特性及声发射特征研究. 岩土力学. 2022(06): 1533-1545 .
    10. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    11. 陈永峰,张海东,赵广臣. 不同加载速率下端部节理岩桥变形破坏及裂隙扩展试验研究. 长江科学院院报. 2021(07): 66-72 .
    12. 张海东,陈永峰,赵广臣,张清华. 单轴压缩下预制端部节理岩桥变形破坏及裂隙扩展机制研究. 煤矿安全. 2021(09): 78-84 .
    13. 李博,叶鹏进,黄林,王丁,赵程,邹良超. 干燥与饱和岩石裂隙受压变形与声发射特性研究. 岩土工程学报. 2021(12): 2249-2257 . 本站查看
    14. 袁新华. 单轴压缩下中部锁固岩桥变形破坏模式及演化机制研究. 中国安全生产科学技术. 2020(09): 116-121 .

    Other cited types(9)

Catalog

    Article views (318) PDF downloads (100) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return