• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Ming-jing, ZHU Fang-yuan. DEM investigation on mechanical properties of methane hydrate bearing soils under different temperatures and pore-water pressures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1761-1769. DOI: 10.11779/CJGE201410001
Citation: JIANG Ming-jing, ZHU Fang-yuan. DEM investigation on mechanical properties of methane hydrate bearing soils under different temperatures and pore-water pressures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1761-1769. DOI: 10.11779/CJGE201410001

DEM investigation on mechanical properties of methane hydrate bearing soils under different temperatures and pore-water pressures

More Information
  • Received Date: July 23, 2013
  • Published Date: October 19, 2014
  • Mechanical properties of methane hydrate bearing soils (MHBS) are influenced by the surrounding temperature (T) and pore-water pressure (σw). Study on such influence is of great significance for the safe exploration of methane hydrate. Firstly, a thermal-hydro-mechanical bond contact model is introduced to capture the microscopic contact behavior of methane hydrate bonded granules. Secondly, the model is implemented into the distinct element method (DEM) to simulate DEM biaxial tests of MHBS for different T and σw. Finally, the influence of T and σw on the macro-mechanical properties of MHBS is discussed by analyzing the results from the DEM biaxial tests and the laboratory tests. The results show that the DEM biaxial tests incorporating the bond contact model can efficiently capture the influence of T and σw on macro-mechanical properties of MHBS. T and σw affect the mechanical properties of inter-particle methane hydrate and in turn influence the macroscopic mechanical behavior of MHBS. A dimensionless parameter L, which is calculated in the coordinates of ordinate and abscissa being dimensionless σw and T respectively as the minimum distance from a point of dimensionless σw and T to the phase equilibrium line, is advised to use for evaluating the macro-mechanical properties of MHBS with respect to different T and σw.
  • [1]
    SOGA K, LEE S L, NG M Y A, et al. Characterisation and engineering properties of methane hydrate soils[M]. London: Characterisation and Engineering Properties of Natural Soils, 2006: 2591-1642.
    [2]
    MACDOBALD G T. The future of methane as an energy resource [J]. Annual Review of Energy, 1990, 15(1): 53-83.
    [3]
    BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modeling of geomechanical behavior of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter, 2010, 12(5): 517-525.
    [4]
    KVENVOLDEN K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23(11/12): 997-1008.
    [5]
    HYODO M, NAKATA Y, YOSHIMOTO N, et al. Mechanical behavior of methane hydrate-supported sand[C]// International Symposium on Geotechnical Engineering Ground Improvement and Geosynthetics for Human Security and Environmental Preservation. Thailand, 2007: 195-208.
    [6]
    MASUI A, HANEDA H, OGATA Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]// Proceedings of the 5th International Offshore and Polar Engineering Conference. Seoul, 2005.
    [7]
    MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compression properties of artificial methane-hydrate- bearing sediment[J]. Journal of Geophysical Research, 2011, 116(B6): B06102, doi: 10.1029/2010JB008049.
    [8]
    魏厚振, 颜荣涛, 陈 盼, 等. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. 岩土力学, 2011, 32(增刊2): 198-203. (WEI Hou-zhen, YAN Rong-tao, CHEN Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different contents under traxial shear tests[J]. Rock and Soil Mechanics, 2011, 32(S2): 198-203. (in Chinese))
    [9]
    刘 芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572. (LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. The traxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1565-1572. (in Chinese))
    [10]
    NIXON M F, GROZIC J L H. Submarine slope failure due to gas hydrate dissociation: a preliminary quatification[J]. Canadian Geotechnical Journal, 2007, 44(3): 314-325.
    [11]
    SULTAN N, COCHONAT P, FOUCHER J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213(1): 379-401.
    [12]
    CUNDALL P A, STRACK O L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [13]
    蒋明镜, 肖 俞, 朱方园. 深海能源土微观力学胶结模型及参数研究[J]. 岩土工程学报, 2012, 34(9): 1574-1583. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. The obtain of micro-contact model and bond parameters for the deep-sea energy soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1574-1583. (in Chinese))
    [14]
    蒋明镜, 肖 俞, 朱方园. 深海能源土宏观力学性质的离元数值模拟分析[J]. 岩土工程学报, 2013, 35(1): 157-163. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163. (in Chinese))
    [15]
    蒋明镜, 朱方园, 申志福. 试验反压对深海能源土宏观力学特性影响的离散元分析[J]. 岩土工程学报, 2013, 35(2): 219-226. (JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu. The influence of backpressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. (in Chinese))
    [16]
    蒋明镜, 朱方园. 一种深海能源土的二维温度-水压-力学微观胶结模型[J]. 岩土工程学报, 2014, 36(7): 1377-1386. (JIANG Ming-jing, ZHU Fang-yuan. Thermal-hydro- mechanical bond contact model for the methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1377-1386. (in Chinese))
    [17]
    HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
    [18]
    蒋明镜, 贺 洁, 周雅萍. 基于微观胶结厚度模型的深海能源土宏观力学特性离散元模拟[J]. 岩土力学, 2014, 36(4): 2672-2681. (JIANG Ming-jing, HE Jie, ZHOU Ya-ping. Distinct element analysis of macro-mechanical properties of deep-sea methane hydrate-bearing soil using micro-bond thickness model[J]. Rock and Soil Mechanics, 2014, 36(4): 2672-2681. (in Chinese))
    [19]
    HYODO M, NAKATA Y, YOSHIMOTO N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45(1): 75-85.
    [20]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(5): 579-597.
  • Related Articles

    [1]WANG Siyuan, TONG Xiaodong. Stability analysis of slopes based on dynamic strength reduction- improved vector sum method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1384-1392. DOI: 10.11779/CJGE20220548
    [2]SHI Li, NI Ding-yu, YAN Zi-hai, CHEN Juan, HU Min-yun. Strength reduction method for safety coefficient of heave-resistant stability of asymmetrically-loaded excavations in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 13-16. DOI: 10.11779/CJGE2019S1004
    [3]WANG Dong-yong, CHEN Xi, LÜ Yan-nan, REN Jin-lan. Shear strength reduction finite element method based on second-order cone programming theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 457-465. DOI: 10.11779/CJGE201903007
    [4]SHI Bu-tao, ZHANG Yun, ZHANG Wei. Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1678-1684. DOI: 10.11779/CJGE201609015
    [5]ZHANG Yu-cheng, YANG Guang-hua, HU Hai-ying, LIU Peng, ZHONG Zhi-hui. Searching for critical slip surface in soil slopes based on calculated results by variable modulus elastoplastic strength reduction method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 14-22.
    [6]LI Xiu-di, zheng Ying-ren, YUAN Yong, shi shao-qing. Strength reduction method for submarine immersed tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1876-1882.
    [7]ZHONG Zhi-hui, YANG Guang-hua, ZHANG Yu-cheng, TANG Jia-ming. Displacement of soil slopes based on local strength reduction method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 196-201.
    [8]XUE Lei, SUN Qiang, QIN Si-qing, LIU Han-dong, HUANG Xin. Scope of strength reduction for inhomogeneous slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 275.
    [9]LONG Xujian, HUANG Xiaoyan, ZHANG Chunyu, ZHOU Ji. Stiffness reduction and slope failure criterion in strength reduction finite element method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1910-1914.
    [10]WU Shunchuan, JIN Aibing, GAO Yongtao. Numerical simulation analysis on strength reduction for slope of jointed rock masses based on gereralized Hoek-Brown failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1975-1980.

Catalog

    Article views (273) PDF downloads (315) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return