• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Jian, YANG Feng, LIU Zhi, YANG Jun-sheng. Three-dimensional limit analysis of blow-out failure modes of shallow shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1344-1349. DOI: 10.11779/CJGE201407019
Citation: ZHANG Jian, YANG Feng, LIU Zhi, YANG Jun-sheng. Three-dimensional limit analysis of blow-out failure modes of shallow shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1344-1349. DOI: 10.11779/CJGE201407019

Three-dimensional limit analysis of blow-out failure modes of shallow shield tunnels

More Information
  • Received Date: August 24, 2013
  • Published Date: July 24, 2014
  • Blow-out failure of shallow tunnels may occur during shield construction process. To study failure rules, based on the upper bound limit analysis of rigid blocks, three-dimensional expressions for the critical blow-out face pressures are derived using the existing failure modes, and the results are optimized by means of the nonlinear programming model. The relations between the critical blow-out face pressures and influence factors such as formation parameters and buried depth are studied. Meanwhile, the failure modes under different conditions are also explored by use of the program. The results show that both the buried depth and the internal friction angle have great effects on the critical pressures and failure modes. The failure regions mainly range from the surroundings to the surface above the face within blow-out failure. Finally, face stability of a shallow tunnel of Changsha Metro Line 2 (from Changsha Road to Sports Park) is discussed by using the upper bound method and the finite difference method. The results obtained by the two methods are in agreement, but the upper bound method is actually more convenient.
  • [1]
    秦建设. 盾构施工开挖面变形与破坏机理研究[D]. 南京:河海大学, 2005. (QIN Jian-she. Study on face deformation and collapse of earth pressure shield tunnel[D]. Nanjing: Hohai University, 2005. (in Chinese))
    [2]
    KIM S H, TONON F. Face stability and required support pressure for TBM driven tunnels with ideal face membrane - Drained case[J]. Tunnelling and Underground Space Technology, 2010, 25: 526-542.
    [3]
    周小文, 蹼家骝. 砂土中隧洞开挖引起的地面沉降试验研究[J]. 岩土力学, 2002, 23(5): 559-563. (ZHOU Xiao-wen, PU Jia-liu. Centrifuge model test on ground settlement induced by tunneling in sandy soil[J]. Rock and Soil Mechanics, 2002, 23(5): 559-563. (in Chinese))
    [4]
    李 昀, 张子新, 张冠军. 泥水平衡盾构开挖面稳定模型试验研究[J]. 岩土工程学报, 2007, 29(7): 1074-1079. (LI Yun, ZHANG Zi-xin, ZHANG Guan-jun. Laboratory study on face stability mechanism of slurry shields[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1074-1079. (in Chinese))
    [5]
    胡雯婷, 吕玺琳, 黄茂松. 盾构隧道开挖面极限支护力三维极限平衡解[J]. 地下空间与工程学报, 2011, 7(5): 853-856. (HU Wen-ting, LÜ Xi-lin, HUANG Mao-song. Three-Dimensional limit equilibrium solution of the support pressure on the shield tunnel face[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(5): 853-856. (in Chinese))
    [6]
    ATKINSON J H, POTTS D M. Stability of shallow tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203-215.
    [7]
    SLOAN S W, ASSADI A. Undrained stability of a square tunnel in a soil whose strength increases linearly with depth[J]. Computer and Geotechnics, 1991, 12: 321-346.
    [8]
    杨 峰. 浅埋隧道围岩稳定性的极限分析上限法研究[D].长沙: 中南大学, 2009. (YANG Feng. Investigation of shallow tunnel stability using upper bound solution of limit analysis[D]. Changsha: Central South University, 2009. (in Chinese))
    [9]
    吕玺琳, 王浩然, 黄茂松. 盾构隧道开挖面稳定极限理论研究[J]. 岩土工程学报, 2011, 33(1): 57-62. (LÜ Xi-lin, WANG Hao-ran, HUANG Mao-song. Limit theoretical study on face stability of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 57-62. (in Chinese))
    [10]
    YAMAMOTO K, LYAMIN A V, WILSON D W, et al. Stability of dual circular tunnel in cohesive-frictional soil subjected to surcharge loading[J]. Computer and Geotechnics, 2013, 50: 41-54.
    [11]
    黄茂松, 宋春夏, 吕玺琳. 非均质黏土地基隧道环向开挖面稳定上限分析[J]. 岩土工程学报, 2013, 35(8): 1504-1512. (HUANG Mao-song, SONG Chun-xia, LÜ Xi-lin. Upper bound analysis for stability of a circular tunnel in heterogeneous clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1504-1512. (in Chinese))
    [12]
    LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Géotechnique, 1990, 40(4): 581-606.
    [13]
    SOUBRA A H. Three-dimensional face stability analysis of shallow circular tunnels[C]// International Conference on Geotechnical and Geological Engineering. Melbourne, 2000: 1-6.
    [14]
    SUBRIN D, WONG H. Tunnel face stability in frictional material: a new 3D failure mechanism[J]. C R Mecanique, 2002, 330: 513-519.
    [15]
    MOLLON G, DIAS D, SOUBRA A H. Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 215-229.
    [16]
    MOLLON G, DIAS D, SOUBRA A H. Probalilistic analsis and design of circular tunnels against face stability[J]. International Journal of Geomechanics, 2009, 9(6): 237-249.
    [17]
    刘 志. 浅覆地铁盾构隧道地表隆起破坏模式与开挖面极限支护力研究[D]. 长沙: 中南大学, 2012. (LIU Zhi. Study of blow-out failure mechanism and limit supporting force on tunnel face in shallow metro tunnel[D]. Changsha: Central South University, 2012. (in Chinese))
    [18]
    CHEN W F. Limit analysis and soil mechanics[M]. New York: Elsevier Scientific Publishing Company, 1975.
  • Related Articles

    [1]ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. DOI: 10.11779/CJGE20220401
    [2]YE Yun-xue, ZOU Wei-lie, HAN Zhong, LIU Xiao-wen. General model for relationship between void ratio and matric suction in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 927-933. DOI: 10.11779/CJGE201905016
    [3]WU Qi, CHEN Guo-xing, ZHU Yu-meng, ZHOU Zheng-long, ZHOU Yan-guo. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019
    [4]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
    [5]WU Qi, CHEN Guo-xing, ZHOU Zheng-long, LING Dao-sheng. Experimental investigation on liquefaction resistance of fine-coarse-grained soil mixtures based on theory of intergrain contact state[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 475-485. DOI: 10.11779/CJGE201803011
    [6]ZOU Wei-lie, WANG Xie-qun, LUO Fang-de, ZHANG Jun-feng, YE Yun-xue, HU Zhong-wei. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1711-1717. DOI: 10.11779/CJGE201709020
    [7]CHEN Guo-xing, SUN Tian, WANG Bing-hui, LI Xiao-jun. Undrained cyclic failure mechanisms and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140-2148. DOI: 10.11779/CJGE201512002
    [8]SUN Wen-jing, LIU Shi-qing, SUN De-an, WEI Zhen-fei. Swelling characteristics of bentonite-sand mixtures with a high sand mixing ratio and its prediction[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1620-1626. DOI: 10.11779/CJGE201509008
    [9]SHAO Long-tan, GUO Xiao-xia, ZHENG Guo-feng. Intergranular stress, soil skeleton stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1478-1483. DOI: 10.11779/CJGE201508017
    [10]Liu Xu, Wang Jianrong, Liu Jing. Modified Brandt’s elastic theory for porous granular media and skeleton elastic wave velocity of water saturated soils[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 26-29.

Catalog

    Article views (390) PDF downloads (292) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return