• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xu-tao, ZHANG Qiang-yong, GAO Qiang, XIANG Wen, WANG Chao, YUAN Sheng-bo. Development and application of geotechnical direct tension test devices[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1309-1315. DOI: 10.11779/CJGE201407015
Citation: ZHANG Xu-tao, ZHANG Qiang-yong, GAO Qiang, XIANG Wen, WANG Chao, YUAN Sheng-bo. Development and application of geotechnical direct tension test devices[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1309-1315. DOI: 10.11779/CJGE201407015

Development and application of geotechnical direct tension test devices

More Information
  • Received Date: November 25, 2013
  • Published Date: July 24, 2014
  • In view of the deficiency of the existing geotechnical tension test devices, a set of horizontal direct tension test device is developed. The test device consists of tensile loading system, digital control hydraulic system and data acquisition analysis system. Using the test device, direct tension tests on easy formation materials can be carried out, and tensile strength and tensile stress-strain curve can be precisely obtained. The loading clamp of device can solve the connection problem between the test specimen and the tensile device. The test device can control test tension continuously and accurately. The post-peak tensile stress-strain curve of materials can be obtained. Using this test device, direct tension tests on clay, iron crystal sand similar materials and cement mortar are carried out. The results show that the tensile strength of clay decreases with its moisture content linearly and the peak tensile strain of clay increases with its moisture content linearly when the dry density of clay remaines unchanged. When the tensile stress of clay reaches the peak stress, the clay specimen will not be destroied suddenly. At this time, the clay specimens still have bearing capacity. The tensile strength of iron crystal sand similar materials will rise as the concentration rosin alcohol solution increases. As the cement-sand ratio increases, the tensile strength and tensile modulus of elasticity of cement mortar will increase accordingly.
  • [1]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
    [2]
    吴媚玲. 水工建筑物[M]. 北京: 清华大学出版社, 1991. (WU Mei-ling. Hydraulic structures[M]. Beijing: Tsinghua University Press, 1991. (in Chinese))
    [3]
    贾 坚. 室内水泥土抗拉强度的测试方法及若干探讨[J]. 上海地质, 1999(2): 48-59. (JIA Jian. The test method of tensile strengths of the laboratory cement-mixed soil[J]. Shanghai Geology, 1999(2): 48-59. (in Chinese))
    [4]
    AJAZ A, PARRY R H G. Stress-strain behaviour of two compacted clays in tension and compression[J]. Géotechnique, 1975, 25(3): 495-512.
    [5]
    AZMATCH T F, SEGO D C, ARENSON L U, et al. Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions[J]. Cold Regions and Technology, 2011, 68(1/2): 85-90.
    [6]
    FANG H Y, CHEN W F. Further study of double-punch test for tensile strength of soils[C]// Proc 3rd Southeast Asian Conf Soil Eng. USA: Published by Southeast Asian Society of Soil Engineering, 1972: 211-215.
    [7]
    BARZEGAR A R, OADES J M, RENGASAMY P, et al. Tensile strength of dry, remoulded soils as affected by properties of the clay fraction[J]. Geoderma, 1995, 65: 93-108.
    [8]
    李广信, 陈 轮, 郑继勤, 等. 纤维加筋黏性土的试验研究[J]. 水利学报, 1995(6): 31-36. (LI Guang-xin, CHEN Lun, ZHENG Ji-qin, et al. Experimental study on fiber-reinforced cohesive soil[J]. Journal of Hydraulic Engineering, 1995(6): 31-36. (in Chinese))
    [9]
    张小江, 周克骥, 周景星. 单轴静动拉压试验仪的研制和纤维加筋土断裂特性试验[J]. 大坝观测与土工测试, 1997, 21(4): 35-38. (ZHANG Xiao-jiang, ZHOU Ke-ji, ZHOU Jing-xing. Development of uniaxial static-cyclic apparatus and experimental study on the fracture properties of fabric reinforced cohesive soil[J]. Dam Observation and Geotechnical Tests, 1997, 21(4): 35-38. (in Chinese))
    [10]
    骆亚生, 邢义川. 黄土的抗拉强度[J]. 陕西水力发电, 1998, 14(4): 6-10. (LUO Ya-sheng, XING Yi-chuan. Tensile strength characteristics of loess[J]. Journal of Shaanxi Water Power, 1998, 14(4): 6-10. (in Chinese))
    [11]
    党进谦, 张伯平, 熊 永. 单轴土工拉伸仪的研制[J]. 水利水电科技进展, 2001, 21(5): 31-32. (DANG Jin-qian, ZHANG Bo-ping, XIONG Yong. Development of earthwork elongation apparatus[J]. Advances in Science and Technology of Water Resources, 2001, 21(5): 31-32. (in Chinese))
    [12]
    党进谦, 李 靖, 张伯平. 黄土单轴拉裂特性的研究[J]. 水力发电学报, 2001(4): 44-48. (DANG Jin-qian, LI Jing, ZHANG Bo-ping. Uniaxial tension crack characteristics of loess[J]. Journal of Hydroelectric Engineering, 2001(4): 44-48. (in Chinese))
    [13]
    张 辉, 朱俊高, 王俊杰, 等. 击实砾质土抗拉强度试验研究[J]. 岩石力学与工程学报, 2006, 25(增刊2): 4186-4190. (ZHANG Hui, ZHU Jun-gao, WANG Jun-jie, et al. Experimental study on tensile strength of compacted gravel soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 4186-4190. (in Chinese))
    [14]
    朱俊高, 梁 彬, 陈秀鸣, 等. 击实土单轴抗拉强度试验研究[J]. 河海大学学报(自然科学版), 2007, 35(2): 186-190. (ZHU Jun-gao, LIANG Bin, CHEN Xiu-ming, et al. Experimental study of uniaxial tensile strength of compacted soils[J]. Journal of Hohai University(Natural Sciences), 2007, 35(2): 186-190. (in Chinese))
    [15]
    张 云, 王惠敏, 鄢丽芬. 击实黏土单轴拉伸特性试验研究[J]. 岩土力学, 2013, 34(8): 2151-2157. (ZHANG Yun, WANG Hui-min, YAN Li-fen. Test research on tensile properties of compacted clay[J]. Rock and Soil Mechanics, 2013, 34(8): 2151-2157. (in Chinese))
    [16]
    吕海波, 曾召田, 葛若东, 等. 胀缩性土抗拉强度试验研究[J]. 岩土力学, 2013, 34(3): 615-620. (LÜ Hai-bo, ZENG Zhao-tian, GE Ruo-dong, et al. Experimental study of tensile strength of swell-shrink soils[J]. Rock and Soil Mechanics, 2013, 34(3): 615-620. (in Chinese))
    [17]
    冉龙洲, 宋翔东, 唐朝生. 干燥过程中膨胀土抗拉强度特性研究[J]. 工程地质学报, 2011, 19(4): 620-625. (RAN Long-zhou, SONG Xiang-dong, TANG Chao-sheng. Laboratorial investigation on tensile strength of expansive soil during drying[J]. Journal of Engineering Geology, 2011, 19(4): 620-625. (in Chinese))
    [18]
    张强勇, 李术才, 李 勇, 等. 地下工程模型试验新方法、新技术及工程应用[M]. 北京: 科学出版社, 2012. (ZHANG Qiang-yong, LI Shu-cai, LI Yong, et al. New techniques and application of geomechanical model test[M]. Beijing: Science Press, 2012. (in Chinese))
    [19]
    张强勇, 李术才, 郭小红. 铁晶砂胶结新型岩土相似材料的研制及其应用[J]. 岩土力学, 2008, 29(8): 2126-2130. (ZHANG Qiang-yong, LI Shu-cai, GUO Xiao-hong. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application[J]. Rock and Soil Mechanics, 2008, 29(8): 2126-2130. (in Chinese))
    [20]
    张强勇, 陈旭光, 林 波. 深部巷道围岩分区破裂三维地质力学模型试验研究[J]. 岩石力学与工程学报, 2009, 29(8): 1757-1766. (ZHANG Qiang-yong, CHEN Xu-guang, LIN Bo. Study of 3D geomechanical model test of zonal disintegration of surrounding rock of deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 29(8): 1757-1766. (in Chinese))
    [21]
    张强勇, 陈旭光, 张 宁, 等. 交变气压风险条件下层状盐岩地下储气库注采气大学三维地质力学试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2410-2419. (ZHANG Qiang-yong, CHEN Xu-guang, ZHANG Ning,et al. Large scale three-dimensional geomechanical model test of gas injection and extraction process for salt rock gas storage under condition of alternating gas press risk[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2410-2419. (in Chinese))

Catalog

    Article views (303) PDF downloads (377) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return