• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Xiao-bing, GU Chuan, CAI Yuan-qiang. Dynamic modulus degradation for soft saturated clay under coupling stress paths of cyclic deviatoric stress and cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1218-1226. DOI: 10.11779/CJGE201407005
Citation: LI Xiao-bing, GU Chuan, CAI Yuan-qiang. Dynamic modulus degradation for soft saturated clay under coupling stress paths of cyclic deviatoric stress and cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1218-1226. DOI: 10.11779/CJGE201407005

Dynamic modulus degradation for soft saturated clay under coupling stress paths of cyclic deviatoric stress and cyclic confining pressure

More Information
  • Received Date: October 09, 2013
  • Published Date: July 24, 2014
  • The dynamic modulus is always the most important parameter in soil dynamics, and the most popular equivalent linear constitutive model in geotechnical engineering is just to quantitatively describe the dynamic modulus degradation. In the previous researches on the dynamic modulus, the factors such as OCR, PI, soil fabric, saturation degree, stress history, frequency and aging have been considered. However, because of some reasons, the stress path, especially the coupling stress path of cyclic deviatoric stress and cyclic confining pressure, has rarely been studied. Considering the fact that the cyclic confining pressure is ubiquitous in soil stress fields, the influences of the cyclic confining pressure on the dynamic modulus of soft saturated clays are studied based on the step-by-step tests. The test results show that the confining pressure changes the magnitudes of the dynamic modulus under certain dynamic strains, and the changing tendency and magnitudes are related to the phase differences. The Hardin-Drnevich model is also proved not to fit the behavior of the dynamic modulus degradation, while the Stokoe equation is more appropriate.
  • [1]
    HARDIN B O, BLACK W L. Vibration modulus of normally consolidated clay[J]. Journal of Soil Mechanics and Foundations Division, ASCE 1968, 94(2): 353-369.
    [2]
    HARDIN B O, DMEVIEH V P. Shear modulus and damping in soils: Measurement and parameter effects[J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1972, 98(6): 603-624.
    [3]
    HARDIN B O, DMERVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, ASCE 1972, 98(7): 667-692.
    [4]
    SEED H B, WONG R T, IDRISS I M, et al. Moduli and damping factors for dynamic analysis of cohesionless soils[J]. Journal of Geotechnical Engineering, ASCE, 1986, 112(11): 1016-1032.
    [5]
    SUN J I, GOLESKORKHI R, SEED H B. Dynamic moduli and damping ratios for cohesive soils[C]// Report No UCB/EERC-88/15. Berkeley: Univercity of California at Berkeley, 1988.
    [6]
    VUCETIC M, DOBRY R. Effect of soil plasticity on cyclic response[J]. Journal of Geotechnical Engineering, ASCE, 1991, 117(1): 89-107.
    [7]
    ISHIBASHI I, ZHANG X J. Unified dynamic shear moduli and damping ratios of sand and clay[J]. Soils and Foundations, 1993, 33(1): 182-191.
    [8]
    ROLLINS K M, EVANS M D, DIEHL N B, et al. Shear modulus and damping relationships for gravels[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(5): 396-405.
    [9]
    STOKOE KH II, DARENDELI M B, ANDRUS R D, et al. Dynamic soil properties: Laboratory, field and correlation studies[C]// Proc 2nd Int Conf on Earthquake Geotechnical Engineering. Lisbon, 1999, 3: 811-845.
    [10]
    DARENDELI M B. Development of a new family of normalized modulus reduction and material damping curves[D]. Austin: Univercity of Texas at Austin, 2001.
    [11]
    ZHANG J F, ANDRUS R D, JUANG C H. Normalized shear modulus and material damping ratio relationships[J]. Journal of Geotechnical and Geoenvironmental Engineering, ACSE, 2005, 131(4): 453-464.
    [12]
    LAMBE T W. Stress path method[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1967, 93(SM6): 268-277.
    [13]
    孙岳崧, 濮家骝, 李广信. 不同应力路径对砂土应力-应变关系的影响[J]. 岩土工程学报, 1987, 9(6): 78-87. (SUN Yue-song, PU Jia-liu, LI Guang-xin. Influences of stress paths on the stress-strain relationships of sand[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(6): 78-87. (in Chinese))
    [14]
    陆士强, 邱金营. 应力历史对砂土应力应变关系的影响[J].岩土工程学报, 1989, 11(4): 134-141. (LU Shi-qiang, QIU Jin-ying. Effect of stress history on stress-strain relation of sand[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(4): 134-141. (in Chinese))
    [15]
    谢定义, 姚仰平, 陈存礼. 饱和砂土应力-应变的实验研究[J]. 陕西水利发电, 1994, 10(1): 1-5. (XIE Ding-yi, YAO Yang-ping, CHEN Cun-li. The research of relation of stress ratio strain increment ratio for saturated sand[J]. Shaanxi Water Power, 1994, 10(1): 1-5. (in Chinese))
    [16]
    邱金营. 应力路径对砂土应力-应变关系的影响[J]. 岩土工程学报, 1995, 17(2): 75-82. (QIU Jin-ying. Effects of stress path on stress-strain behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 75-82. (in Chinese))
    [17]
    刘国彬. 软土的卸荷模量[J]. 岩土工程学报, 1996, 18(6): 18-23. (LIU Guo-bin. Unloading modulus of the shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 1996, 28(6): 18-23. (in Chinese))
    [18]
    李广信, 郭瑞平. 土的卸载体缩与可恢复剪胀[J]. 岩土工程学报, 2000, 22(2): 158-161. (LI Guang-xin, GUO Rui-ping. Volume-contraction in unloading of shear tests and reversible dilatation of soils[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 158-161. (in Chinese))
    [19]
    BALASUBRALNNAIMA A S, CHAUDRY A R. Deformation and strength characteristics of soft Bangkok Clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(GT9): 1153-1167.
    [20]
    CHO W, FINNO R J. Stress-strain responses of block samples of compressible chicago glacial clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 136(1): 178-188.
    [21]
    FINNO R J, CHO W. Recent stress-history effects on compressible chicago glacial clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 137(3): 197-207.
    [22]
    姚仰平, 罗 汀, 孙德安, 等. 黏土和砂土简单的三维本构模型[J]. 岩土工程学报, 2002, 24(2): 240-246. (YAO Yang-ping, LUO Ting, SUN De-an, et al. A simple 3-D constitutive model for both clay and sand[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 240-246. (in English))
    [23]
    罗 汀, 路德春, 姚仰平. 考虑应力路径影响下的三维本构模型[J]. 岩土力学, 2004, 25(5): 688-693. (LUO Ting, LU De-chun, YAO Yang-ping. Three dimensional constitutive model of sand considering stress path[J]. Rock and Soil Mechanics, 2004, 25(5): 688-693. (in Chinese))
    [24]
    罗 汀, 姚仰平. 岩土材料应力路径无关硬化参量的构成方法[J]. 岩土力学, 2007, 28(1): 69-76. (LUO Ting, YAO Yang-ping. Method for developing hardening parameter independent of stress path for geomaterials[J]. Rock and Soil Mechanics, 2007, 28(1): 69-76. (in Chinese))
    [25]
    路德春, 罗 汀, 姚仰平. 砂土应力路径本构模型的试验验证[J]. 岩土力学, 2005, 26(5): 717-722. (LU De-chun, LUO Ting, YAO Yang-ping. Test validating of constitutive model of sand considering complex stress path[J]. Rock and Soil Mechanics, 2005, 26(5): 717-722. (in Chinese))
    [26]
    王成华, 李广信. 土体应力-应变关系转型问题分析[J]. 岩土力学, 2004, 25(8): 1185-1190. (WANG Cheng-hua, LI Guang-xin. Analysis of problem of pattern transition in stress-strain relations of soils[J]. Rock and Soil Mechanics, 2004, 25(8): 1185-1190. (in Chinese))
    [27]
    LANCELLOTTA R. Geotechnical engineering[M]. Rotterdam: A A Balkema, 1995.
    [28]
    LADE P V. Effects of voids and volume changes on the behavior of frictional materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(4): 351-370.
    [29]
    王靖涛, 周葆春. 减围压三轴压缩路径下重塑黏土本构关系的数值建模研究[J]. 岩石力学与工程学报, 2007, 26(1): 3190-3195. (WANG Jing-tao, ZHOU Bao-chun. Study on numerical modeling of constitutive relations for remolded clay under reduced triaxial compression path[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 3190-3195. (in Chinese))
    [30]
    GU Chuan, WANG Jun, CAI Yuan-qiang, et al. Undrained cyclic triaxial behavior of saturated clays under variable confining pressure[J]. Soil Dynamics and Earthquake Engineering, 2012, 40: 118-128.
    [31]
    CAI Yuan-qiang, GU Chuan, WANG Jun, et al. One-way cyclic triaxial behavior of saturated clay: comparison between constant and variable confining pressure[J]. ASCE, Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5). doi: 10.1061/(ASCE)GT.1943-5606.0000760.
    [32]
    谷 川, 蔡袁强, 王 军. 地震P波和S波耦合的变围压动三轴试验模拟[J]. 岩土工程学报, 2012, 34(10): 1903-1909. (GU Chuan, CAI Yuan-qiang, WANG Jun. Coupling effects of P-waves and S-waves based on cyclic triaxial tests with cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1903-1909. (in Chinese))
    [33]
    王 军, 谷 川, 蔡袁强, 等. 动三轴试验中饱和软黏土的孔压特性及其对有效应力路径的影响[J]. 岩石力学及工程学报, 2012, 31(6): 1290-1296. (WANG Jun, GU Chuan, CAI Yuan-qiang, et al. Behavior of pore water pressure in dynamic triaxial tests of saturated soft clay and its effect on effective stress path[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1290-1296. (in Chinese))
    [34]
    BROWN S F, HYDE A F L. Significance of cyclic confining stress in repeated-load triaxial testing of granular material[M]. Washington: Transportation Research Board, 1975: 49-58.
    [35]
    NATAATMADJA A, PARKIN A K. Characterization of granular materials for pavements[J]. Canadian Geotechnical Journal, ASCE, 1989, 26: 725-730.
    [36]
    ZAMAN M, CHEN D, LAGUROS J. Resilient moduli of granular materials[J]. Journal of Transportation Engineering, ASCE, 1994, 120(6): 967-988.
    [37]
    CHAN F W K, BROWN S F. Significance of principal stress rotation in pavements[C]// Proc 13th ICSMFE. Rotterdam: Balkema, 1994: 1823-1826.
    [38]
    SIMONSEN E, ISACSSON U. Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests[J]. Canadian Geotechnical Journal, 2001, 38: 863-875.
    [39]
    TATSUOKA F, SHIBUYA S, KUWANO R. Advanced laboratory stress-strain testing of geomaterials[M]. Rotterdam: Balkema, 2001: 92-110.
    [40]
    王 军, 蔡袁强, 丁光亚, 等. 双向激振下饱和软黏土动模量和阻尼变化规律试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 423-432. (WANG Jun, CAI Yuan-qiang, DING Guang-ya, et al. Experimental research on changing rules of dynamic modulus and damping ratio of saturated soft clay under bidirectional exciting cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 423-432. (in Chinese))

Catalog

    Article views (421) PDF downloads (418) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return