• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LU Li-na, FAN Heng-hui, CHEN Hua, MA Dong-lin, WANG Zhong-ni, HE Zhi-qiang. Influencing factors for uniaxial tensile strength of dispersive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1160-1166. DOI: 10.11779/CJGE201406023
Citation: LU Li-na, FAN Heng-hui, CHEN Hua, MA Dong-lin, WANG Zhong-ni, HE Zhi-qiang. Influencing factors for uniaxial tensile strength of dispersive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1160-1166. DOI: 10.11779/CJGE201406023

Influencing factors for uniaxial tensile strength of dispersive soils

More Information
  • Received Date: August 05, 2013
  • Published Date: June 19, 2014
  • In order to measure the tensile strength accurately, by using the self-developed moulds and the electric uniaxial tensile tester and comparing the transitional soils with the non-dispersive ones, the influencing factors for tensile strength and fracture mechanism of dispersive soils are studied. The experimental results show that the tester can effectively avoid the end effect and the influence of weight if the length-diameter aspect ratio is 2.5 and the tensile rate is 0.8 mm/min. The uniaxial tensile strengths of the three kinds of soil samples all decrease with the increase of the moisture content and increase with the increase of compactness and clay content. The uniaxial tensile strength of the dispersive soils is lower than that of the transitional soils and non-dispersive soils. The main reasons are that the dispersive soils have a certain amount of Na+ and alkaline pH. These factors make the diffusion double layers thicker and lead to smaller gravitational and larger repulsion among particles. Thus the tensile strength becomes lower macroscopically.
  • [1]
    SL 237—1999土工试验规程[S]. 1999. (SL 237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [2]
    张辉, 朱俊高, 王俊杰, 等. 击实砾质土抗拉强度试验研究[J]. 岩石力学与工程学报, 2006, 25(2): 4186-4190. (ZHANG Hui, ZHU Jun-gao, WANG Jun-jie, et al. Experimental study on tensile strength of compacted gravel soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 4186-4190. (in Chinese))
    [3]
    陈有亮, 王明, 徐珊, 等. 上海人工冻结软黏土抗压抗拉强度试验研究[J]. 岩土工程学报, 2009, 31(7): 1046-1051. (CHEN You-liang, WANG Ming, XU Shan, et al. Tensile and compressive strength tests on artificial soft clay in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1046-1051. (in Chinese))
    [4]
    党进谦, 李靖, 张伯平. 黄土单轴拉裂特性的研究[J]. 水力发电学报, 2001, 75(4): 44-48. (DANG Jin-qian, LI Jing, ZHANG Bo-ping. Study on uniaxial tensile splitting characteristics of loess[J]. Journal of Hydroelectric Engineering, 2001, 75(4): 44-48. (in Chinese))
    [5]
    吕海波, 曾召田, 葛若东, 等. 胀缩性土抗拉强度试验研究[J]. 岩土力学, 2013, 34(3): 615-62. (LÜ Hai-bo, ZENG Shao-tian, GE Ruo-dong, et al. Experimental study of tensile strength of swell-shrink soils[J]. Rock and Soil Mechanics, 2013, 34(3): 615-62. (in Chinese))
    [6]
    李全明, 于玉贞, 张丙印, 等. 压实黏土的脆性断裂模型及有限元算法[J]. 岩土力学, 2006, 27(9): 1527-1532. (LI Quan-ming, YU Yu-zhen, ZHANG Bing-yin, et al. Brittle fracture model of compacted cohesive soil and finite element method[J]. Rock and Soil Mechanics, 2006, 27(9): 1527-1532. (in Chinese))
    [7]
    孙萍, 彭建兵, 陈立伟, 等. 黄土拉张破坏特性试验研究[J]. 岩土工程学报, 2009, 31(6): 980-984. (SUN Ping, PENG JIAN-bing, CHEN Li-wei, et al. Experimental research on tensile fracture characteristics of loess[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 980-984. (in Chinese))
    [8]
    AKAGAWA Satoshi, NISHISATO Kohei. Tensile strength of frozen soil in the temperature range of the frozen fringe[J]. Cold Regions Science and Technology, 2009, 57: 13-22.
    [9]
    樊恒辉, 孔令伟. 分散性土研究[M]. 北京: 中国水利水电出版社, 2012. (FAN Heng-hui, KONG Ling-wei. Study of dispersive soil[M]. Beijing: China WaterPower Press, 2012. (in Chinese))
    [10]
    Perry Edward B. Susceptibility of dispersive clay at Grenada Dam, Mississippi, to piping and rainfall erosion[R]. Vicksburg Miss: Geotechnical lab, Army Engineer Waterways Experiment Station, 1979.
    [11]
    PHILLIPS J T. Case histories of repairs and designs for dams built with dispersive clay[M]// Dispersive clays, related piping, and erosion in geotechnical projects, ASTM STP 623, SHERARD J L, DECKER R S, eds, American Society for Testing and Material, 1977: 330-340.
    [12]
    崔亦昊, 谢定松, 杨凯虹, 等. 分散性土均质土坝渗透破坏性状及溃坝原因[J]. 水利水电技术, 2004, 35(12): 42-45. (CUI Yi-hao, XIE Ding-song, YANG Kai-hong, et al. Character of seepage failure and collapse cause of dispersive clay homogeneous earth dam[J]. Water Resources and Hydropower Engineering, 2004, 35 (12): 42-45. (in Chinese))
    [13]
    冉龙洲, 宋翔东, 唐朝生. 干燥过程中膨胀土抗拉强度特性研究[J]. 工程地质学报, 2011, 19(4): 620-625. (RAN Long-zhou, SONG Xiang-dong, TANG Chao-sheng. Laboratorial investigation on tensile strength of expansive soil during drying[J]. Journal of Engineering Geology, 2011, 19(4): 620-625. (in Chinese))
    [14]
    BARZEGAR A R, RENGASAMY P, OADES J M. Effects of clay type and rate of wetting on the mellowing of compacted soils[J]. Geoderma, 1995, 68: 39-49.
    [15]
    BARZEGAR A R, OADES J M. Tensile strength of dry, remolded soils as affected by properties of the clay fraction by properties of the clay fraction by properties of the clay fraction[J]. Geoderma, 1994, 65: 93-108.
    [16]
    樊恒辉, 李洪良, 赵高文. 黏性土的物理化学及矿物学性质与分散机理[J]. 岩土工程学报, 2012, 34(9): 1740-1745. (FAN Heng-hui, LI Hong-liang, ZHAO Gao-wen. Relation among dispersive mechanism, physical-chemical and mineral properties of clayey soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1740-1745. (in Chinese))
    [17]
    FAN Heng-hui, KONG Ling-wei. Empirical equation for evaluating the dispersivity of cohesive soil[J]. Canadian Geotechnical Journal, 2013, 50(9): 989-994.
  • Related Articles

    [1]HAN Hong-xing, CHEN-Wei, QIU Zi-feng, FU Xu-dong. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 234-239. DOI: 10.11779/CJGE2016S2038
    [2]HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053
    [3]SHAO Hong-jie, LIU Run, LIN Min-bo, XU Yu. Numerical simulation method for soil strength reduction during pile driving in offshore engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 354-359.
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]DAI Xin, XU wei, ZOU Li, SHEN Qing-feng. Numerical simulation of shafts during excavation process[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 154-157.
    [6]XU Neng-xiong. 3D engineering geological modeling method suitable for numerical simulation       [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1710-1716.
    [7]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.
  • Cited by

    Periodical cited type(18)

    1. 苏凯,杨逢杰,龚睿,朱洪泽. 穿越岩溶地区隧洞施工开挖防渗措施研究. 中国农村水利水电. 2024(05): 215-220+225 .
    2. 张江涛,柴正富,蒲振华,江杰,甘雨. 跨管状垂直落水溶洞隧道施工变形分析及加固措施. 公路工程. 2024(05): 8-16+33 .
    3. 王圣涛,张俊儒,彭波,燕波. 拱隧一体结构跨越巨型溶洞段处治技术研究. 现代隧道技术. 2024(05): 263-273 .
    4. 孙克国,甄映州,魏勇,肖支飞,杨朋,方纯彬,蔡定淮,刘广明. 富水岩溶区基坑稳定性影响规律与分析. 现代隧道技术. 2023(01): 149-158+194 .
    5. 黄城,刘远明,袁侨蔚,欧洵. 基于强度理论的隧道与溶洞间安全距离计算. 中国水运. 2023(03): 143-145 .
    6. 周科,李成强,张玉广. 山区陡坡路堤滑坡失稳分析. 中国水运. 2023(05): 158-160 .
    7. 王祥,陈发达,吴贤国,冯宗宝,陈虹宇. 基于云模型和D-S证据理论的岩溶盾构隧道掌子面稳定性评价. 工业建筑. 2023(11): 65-72 .
    8. 叶雄,余浩,王桂林,龚晟. 穿煤隧道层面性质对岩柱安全厚度的影响研究. 地下空间与工程学报. 2023(S2): 926-933 .
    9. 杨曦,赵智辉,刘跃成,周创,康跃明,范明外. 双隧道开挖进尺对其掌子面稳定现场监测和数值分析——以安石隧道为例. 科技和产业. 2022(01): 357-362 .
    10. 孙希波,刘宏翔,李鹏飞,郭彩霞. 隧道穿越富水断层隔水岩体冲切剪切破坏研究. 隧道建设(中英文). 2022(06): 984-993 .
    11. 寇小勇,樊浩博,李芒原,郎志军,张家奎,高新强,郜现磊,朱正国. 富水岩溶隧道掌子面安全岩柱厚度研究. 科学技术与工程. 2022(24): 10706-10717 .
    12. 房忠栋,杨为民,王旌,石锦江,巴兴之,王浩. 深埋隧道前方承压溶洞隔水岩体最小安全厚度研究. 中南大学学报(自然科学版). 2021(08): 2805-2816 .
    13. 周平,王志杰,侯伟名,周飞聪,杜彦良,冯冀蒙,徐海岩. 昔格达地层隧道局部浸湿失稳特征及突变预测研究. 岩土工程学报. 2020(03): 503-512 . 本站查看
    14. 梅卫锋,黎浩. 考虑岩墙厚度的大断面隧道掌子面稳定性分析. 公路工程. 2020(02): 200-206 .
    15. 陈峥,何平,颜杜民,高红杰,聂奥祥. 超前支护下隧道掌子面稳定性极限上限分析. 岩土力学. 2019(06): 2154-2162 .
    16. 杨松,彭忠举,欧阳汛,艾祖斌,曹振生,陈全胜,周浩. 基于个旧组地质的长大隧道施工技术经济评价. 价值工程. 2019(21): 126-128 .
    17. 王成洋,傅鹤林,张佳华. 非饱和浅埋隧道稳定性的上限分析. 采矿与安全工程学报. 2019(06): 1161-1167 .
    18. 杨松,彭忠举,欧阳汛. 基于个旧组岩溶地质的长大隧道施工要点研究. 交通节能与环保. 2019(06): 115-118 .

    Other cited types(19)

Catalog

    Article views PDF downloads Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return