• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Chuang, ZHANG Xiang-dong, LI Yong-jing. Equivalent mechanical model for post-peak behaviors of deep soft rock and numerical computation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1113-1121. DOI: 10.11779/CJGE201406017
Citation: SUN Chuang, ZHANG Xiang-dong, LI Yong-jing. Equivalent mechanical model for post-peak behaviors of deep soft rock and numerical computation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1113-1121. DOI: 10.11779/CJGE201406017

Equivalent mechanical model for post-peak behaviors of deep soft rock and numerical computation

More Information
  • Received Date: October 20, 2013
  • Published Date: June 19, 2014
  • Based on the continuum theory, quantitative GSI rock rating system and Hoek-Brown strength criterion and by using the FLAC3D program as the development platform, the conventional plastic model and strain-softening model are adopted to comparatively analyze the spatial excavation surface effect curves of deep rock. Combined with engineering design and field applications of deep shaft support, numerical validation is performed. The equivalent strain softening model for jointed soft rock reflecting attenuation of the post-peak strength parameters shows that: the post-peak behaviors of rock mass are dominated by quality grade and confining pressure, and during unloading after the peak, the process of softening parameter is not a constant value and varies with the size of the confining pressure. By computing the excavation face spatial constraint response curves of deep soft rock, the calculated results based on Mohr-Coulomb and Hoek-Brown criterion ideal elastoplastic models are basically the same. The results of the elastoplastic model are quite different from those of the strain-softening model, mainly in the middle range of geological indices. Practical application shows that the equivalent strain softening model for jointed rock more truly reflects the post-peak mechanical behaviors of the deep soft rock, and furthermore, the link between the geological strength indices and the continuum theory is established for engineering applications so as to provide a reference for similar projects.
  • [1]
    袁亮. 深井巷道围岩控制理论及淮南矿区工程实践[M].北京: 煤炭工业出版社, 2006. (YUAN Liang. Control of surrounding strata in deep mine roadway and practice in Huainan area[M]. Beijing: China Coal Industry Publishing House, 2006. (in Chinese))
    [2]
    康红普, 林健, 杨景贺, 等. 松软破碎硐室群围岩应力分布及综合加固技术[J]. 岩土工程学报, 2011, 33(5): 808-815. (KANG Hong-pu, LIN Jian, YANG Jing-he, et al. Stress distribution and synthetic reinforcing technology for chamber group with soft and fractured surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 808-815. (in Chinese))
    [3]
    LEE Y K, PIETRUSZCZAK S. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology, 2008, 23(3): 588-599.
    [4]
    张立松, 闫相祯, 杨恒林, 等. 基于测井信息的煤岩GSI-JP破碎分级预测[J]. 岩土工程学报, 2011, 33(7): 1091-1098. (ZHANG Li-song, YAN Xiang-zhen, YANG Heng-lin, et al. GSI-JP crushed classification prediction method of coal rock based on logging information[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1091-1098. (in Chinese))
    [5]
    孙闯, 张向东, 张建俊. 深部断层破碎带竖井围岩与支护系统稳定性分析[J]. 煤炭学报, 2013, 38(4): 587-595. (SUN Chuang, ZHANG Xiang-dong, ZHANG Jian-jun. Stability analysis of vertical shaft surrounding rock and supporting system in deep fault fracture[J]. Journal of China Coal Society, 2013, 38(4): 587-595. (in Chinese))
    [6]
    李英杰, 潘一山, 李忠华. 岩体产生分区碎裂化现象机理分析[J]. 岩土工程学报, 2006, 28(9): 1124-1129. (LI Ying-jie, PAN Yi-shan, LI Zhong-hua. Analysis of mechanism of zonal disintegration of rocks[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1124-1129. (in Chinese))
    [7]
    夏才初, 唐志成, 宋英龙, 等. 节理峰值剪切位移及其影响因素分析[J]. 岩土力学, 2012, 33(4): 961-971. (XIA Cai-chu,TANG Zhi-cheng,et al. SONG Ying-longAnalysis of relationship between joint peak shear displacement and its influence factors[J]. Rock and Soil Mechanics, 2012, 33(4): 961-971. (in Chinese))
    [8]
    ZDENEK P, BAZANT F. Continuum theory for strain- softening[J]. Journal of Engineering Mechanics, 1984, 110(12): 1666-1692.
    [9]
    王水林, 吴振君, 李春光, 等. 应变软化模拟与圆形隧道衬砌分析[J]. 岩土力学, 2010, 31(6): 1929-1937. (WANG Shui-lin, WU Zhen-jun, LI Chun-guang, et al. Modeling of strain-softening and analysis of a lining for circular tunnel[J]. Rock and Soil Mechanics, 2010, 31(6): 1929-1937. (in Chinese))
    [10]
    CAI M, KAISERA P K, UNOB H, et al. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41: 3-19.
    [11]
    HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165-86.
    [12]
    CAI M, KAISERA P K, UNOB H, et al. Determination of residual strength parameters of jointed rock masses using the GSI system[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44: 247-265.
    [13]
    ALEJANO L R, Alfonso Rodr guez-Dono, María Veiga. Plastic radii and longitudinal deformation profiles of tunnels excavatedin strain-softening rock masses[J]. Tunnelling and Underground Space Technology, 2012, 30: 169-182.
    [14]
    ZHAO X G, CAI M. A dilation angle model for rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 368-384.
    [15]
    HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek-Brown failure criterion(2002 edition) [C]// Proceedings of NARMS-TAC 2002, Mining Innovation an Technology. Toronto: University of Toronto, 2002: 267-273.
    [16]
    ALEJANO L R, RODRIGUEZ-DONO A, VEIGA M. Plastic radii and longitudinal deformation profiles of tunnels excavatedin strain-softening rock masses[J]. Tunnelling and Underground Space Technology, 2012, 30: 169-182.
    [17]
    孙闯, 张向东, 李永靖. 高应力软岩巷道围岩与支护结构相互作用分析[J]. 岩土力学, 2013, 34(9): 2601-2609. (SUN Chuang, ZHANG Xiang-dong, LI Yong-jing. Analysis of interaction between surrounding rock and support under high stressed soft rock roadway[J]. Rock and Soil Mechanics, 2013, 34(9): 2601-2609. (in Chinese))
    [18]
    HOEK E, DIEDERICH M S. Empirical estimation of rock mass modulus[J]. Rock Mechanics and Rock Engineering, 2006: 203-215.
    [19]
    侯公羽, 李晶晶. 弹塑性变形条件下围岩-支护相互作用全过程解析[J]. 岩土力学, 2012, 33(4): 961-971. (HOU Gong-yu, LI Jing-jing. Analysis of complete process of interaction of surrounding rock and support under elastioplastic deformation condition[J]. Rock and Soil Mechanics, 2012, 33(4): 961-971. (in Chinese))
    [20]
    CARRANZA-TORRES C, FAIRHURST C. Application of convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunnelling and Underground Space Technology, 2009, 15(2): 187-213.
    [21]
    赵星光, 蔡明, 蔡美峰. 岩石剪胀角模型与验证[J]. 岩石力学与工程学报, 2010, 29(5): 970-982. (ZHAO Xing-guang, CAI Ming, CAI Mei-feng. A rock dilation angle model and its verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 970-982. (in Chinese))
    [22]
    ALEJANO L R, ALONSO E. Application of the convergence-confinement method to tunnels in rock masses exhibiting Hoek-Brown strain-softening behaviour[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 150-160.
    [23]
    张传庆, 冯夏庭, 周辉, 等. 应力释放法在隧洞开挖模拟中若干问题的研究[J]. 岩土力学, 2008, 29(5): 1174-1181. (ZHANG Chuan-qing, FENG Xia-ting, ZHOU Hui, et al. Study of some problems about application of stress release method to tunnel excavation simulation[J]. Rock and Soil Mechanics, 2008, 29(5): 1174-1181. (in Chinese))
  • Related Articles

    [1]HAN Hong-xing, CHEN-Wei, QIU Zi-feng, FU Xu-dong. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 234-239. DOI: 10.11779/CJGE2016S2038
    [2]HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053
    [3]SHAO Hong-jie, LIU Run, LIN Min-bo, XU Yu. Numerical simulation method for soil strength reduction during pile driving in offshore engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 354-359.
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]DAI Xin, XU wei, ZOU Li, SHEN Qing-feng. Numerical simulation of shafts during excavation process[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 154-157.
    [6]XU Neng-xiong. 3D engineering geological modeling method suitable for numerical simulation       [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1710-1716.
    [7]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.
  • Cited by

    Periodical cited type(18)

    1. 苏凯,杨逢杰,龚睿,朱洪泽. 穿越岩溶地区隧洞施工开挖防渗措施研究. 中国农村水利水电. 2024(05): 215-220+225 .
    2. 张江涛,柴正富,蒲振华,江杰,甘雨. 跨管状垂直落水溶洞隧道施工变形分析及加固措施. 公路工程. 2024(05): 8-16+33 .
    3. 王圣涛,张俊儒,彭波,燕波. 拱隧一体结构跨越巨型溶洞段处治技术研究. 现代隧道技术. 2024(05): 263-273 .
    4. 孙克国,甄映州,魏勇,肖支飞,杨朋,方纯彬,蔡定淮,刘广明. 富水岩溶区基坑稳定性影响规律与分析. 现代隧道技术. 2023(01): 149-158+194 .
    5. 黄城,刘远明,袁侨蔚,欧洵. 基于强度理论的隧道与溶洞间安全距离计算. 中国水运. 2023(03): 143-145 .
    6. 周科,李成强,张玉广. 山区陡坡路堤滑坡失稳分析. 中国水运. 2023(05): 158-160 .
    7. 王祥,陈发达,吴贤国,冯宗宝,陈虹宇. 基于云模型和D-S证据理论的岩溶盾构隧道掌子面稳定性评价. 工业建筑. 2023(11): 65-72 .
    8. 叶雄,余浩,王桂林,龚晟. 穿煤隧道层面性质对岩柱安全厚度的影响研究. 地下空间与工程学报. 2023(S2): 926-933 .
    9. 杨曦,赵智辉,刘跃成,周创,康跃明,范明外. 双隧道开挖进尺对其掌子面稳定现场监测和数值分析——以安石隧道为例. 科技和产业. 2022(01): 357-362 .
    10. 孙希波,刘宏翔,李鹏飞,郭彩霞. 隧道穿越富水断层隔水岩体冲切剪切破坏研究. 隧道建设(中英文). 2022(06): 984-993 .
    11. 寇小勇,樊浩博,李芒原,郎志军,张家奎,高新强,郜现磊,朱正国. 富水岩溶隧道掌子面安全岩柱厚度研究. 科学技术与工程. 2022(24): 10706-10717 .
    12. 房忠栋,杨为民,王旌,石锦江,巴兴之,王浩. 深埋隧道前方承压溶洞隔水岩体最小安全厚度研究. 中南大学学报(自然科学版). 2021(08): 2805-2816 .
    13. 周平,王志杰,侯伟名,周飞聪,杜彦良,冯冀蒙,徐海岩. 昔格达地层隧道局部浸湿失稳特征及突变预测研究. 岩土工程学报. 2020(03): 503-512 . 本站查看
    14. 梅卫锋,黎浩. 考虑岩墙厚度的大断面隧道掌子面稳定性分析. 公路工程. 2020(02): 200-206 .
    15. 陈峥,何平,颜杜民,高红杰,聂奥祥. 超前支护下隧道掌子面稳定性极限上限分析. 岩土力学. 2019(06): 2154-2162 .
    16. 杨松,彭忠举,欧阳汛,艾祖斌,曹振生,陈全胜,周浩. 基于个旧组地质的长大隧道施工技术经济评价. 价值工程. 2019(21): 126-128 .
    17. 王成洋,傅鹤林,张佳华. 非饱和浅埋隧道稳定性的上限分析. 采矿与安全工程学报. 2019(06): 1161-1167 .
    18. 杨松,彭忠举,欧阳汛. 基于个旧组岩溶地质的长大隧道施工要点研究. 交通节能与环保. 2019(06): 115-118 .

    Other cited types(19)

Catalog

    Article views (318) PDF downloads (387) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return