• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Guo-wei, ZHOU Yang, RUAN Yu-sheng, HUANG Kai, YIN Jian-hua. Plane strain tests on creep characteristics of over-consolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1028-1035. DOI: 10.11779/CJGE201406006
Citation: LI Guo-wei, ZHOU Yang, RUAN Yu-sheng, HUANG Kai, YIN Jian-hua. Plane strain tests on creep characteristics of over-consolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1028-1035. DOI: 10.11779/CJGE201406006

Plane strain tests on creep characteristics of over-consolidated clay

More Information
  • Received Date: October 11, 2013
  • Published Date: June 19, 2014
  • It is more realistic that the clay unit cell of road embankment is in the state of plane strain. The creep characteristics of over-consolidated soils are studied through plane strain tests for the undisturbed soft clay. Four creep tests are carried out by using the plane strain creep apparatus, one is conducted on normally consolidated clay and three are on over-consolidated clay. The studies show that for the normally consolidated soils, the volumetric strain of creep in plane strain tests varies in the same way with the secondary consolidation under one-dimension condition, and that the clay presents less axial strain in plane strain tests than that in one-dimension tests when the principal stress ratio equals the ratio in K0 state. The definition of plane strain over-consolidation ratio (OCRp) is given, and it is used to describe the characteristics of over-consolidated soils. It is found that it is reasonable to determine the volumetric creep coefficient as well as axial creep coefficient directly by using OCRp. Compared with normally consolidated clay, under plane strain state, the over-consolidated clay has a lager Poisson's ratio and larger principal stress in the direction of limited deformation.
  • [1]
    赵维炳, 刘国楠, 李荣强. 控制工后变形新一代软基处理技术的发展[J]. 土木工程学报, 2004, 37(6): 79-819. (ZHAO Wei-bin, LIU Guo-nan, LI Rong-qiang. Development of new improving techniques for controlling post-construction deformation of soft soil ground[J]. China Civil Engineering Journal, 2004, 37(6): 79-819. (in Chinese))
    [2]
    KUTTER B L, SATHIALING N. Elastic-viscoplastic modeling of the rate-dependent behavior of clays. Géotechnique, 1992, 42(3): 427-441.
    [3]
    詹美礼, 钱家欢, 陈绪禄. 软土流变特性试验及流变模型[J]. 岩土工程学报, 1993, 15(3): 55-62. (ZHAN Mei-li, QIAN Jia-huan, CHEN Xu-lu. Tests on rheological behavior of soft soil and rheologic model[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 55-62. (in Chinese))
    [4]
    YIN J H, ZHU J G, GRAHAM J. A new elastic viscoplastic model for time-dependent behavior of normally and over consolidated clays: theory and verification[J]. Canadian Geotechnical Journal, 2002, 39(1): 157-173.
    [5]
    BORJA R I, KAVAZANJIAN E. A constitutive model for the stress-strain-time behavior of ‘wet’ clays[J]. Géotechnique, 1985, 35(3): 283-298.
    [6]
    李军世, 孙 钧. 上海淤泥质黏土的Mesri蠕变模型[J]. 土木工程学报, 2001, 34(6): 75-79. (LI Jun-shi, SUN Jun. Mesri creep model of Shanghai soft clay[J]. China Civil Engineering Journal, 2001, 34(6): 75-79. (in Chinese))
    [7]
    王常明, 王 清, 张淑华. 滨海软蠕变特性及蠕变模型[J]. 岩石力学与工程学报, 2004, 23(3): 227-230. (WANG Chang-ming, WANG Qing, ZHANG Shu-hua. Creep characteristics and creep model for marine soft soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 23(3): 227-230. (in Chinese))
    [8]
    陈晓平, 周秋娟, 朱鸿鹄, 等. 软土蠕变固结特性研究[J]. 岩土力学, 2007, 28(增刊): 1-9. (CHEN Xiao-ping, ZHOU Qiu-juan, ZHU Hong-hu, et al. Research on creep and consolidation characteristics of soft soil[J]. Rock and Soil Mechanics, 2007, 28(S0): 1-9. (in Chinese))
    [9]
    朱鸿鹄, 陈晓平, 程小俊, 等. 考虑排水条件的软土蠕变特性及模型研究[J]. 岩土力学, 2006, 27(5): 694-698. (ZHU Hong-hu, CHEN Xiao-ping, CHEN Xiao-jun, et al. Study on creep characteristics and model of soft soil considering drainage condition[J]. Rock and Soil Mechanics, 2006, 27(5): 694-698. (in Chinese))
    [10]
    余湘娟. 软土的次固结特性试验及计算模型研究[D]. 南京: 河海大学, 2008. (YU Xiang-juan. Secondary consolidation characters and computing mold[D]. Nanjing: Hohai University, 2008. (in Chinese))
    [11]
    JTG E40—2007 公路土工试验规程[S]. 2007: 156-162. (JTGE40—2007 Highway soil test procedures[S]. 2007: 156-162. (in Chinese))
    [12]
    李国维, 胡 坚, 陆晓岑, 等. 超固结软黏土一维蠕变次固结系数与侧压力系数[J]. 岩土工程学报, 2012, 34(12): 2198-2205. (LI Guo-wei, HU Jian, LU Xiao-cen, et al. One-dimensional secondary consolidation coefficient and lateral pressure coefficient of over consolidated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2198-2205. (in Chinese))
    [13]
    钱家欢, 殷宗泽. 土工原理和计算[M]. 北京: 中国水利电力出版社, 1994: 44-278. (QIAN Jia-huan, YIN Zong-ze. Geotechnical principles and calculation[M]. Beijing: China Water Power Press, 1994: 44-278. (in Chinese))
    [14]
    李广信, 张其光, 黄永男, 等. 应力比平面应变试验中主应力转换的研究[J]. 岩土力学, 2006, 27(11): 1867-1872. (LI Guang-xin, ZHANG Qi-guang, HUANG Yong-nan, et al. Study on transforming of principal stress in constant tress ratio plane strain tests[J]. Rock and Soil Mechanics, 2006, 27(11): 1867-1872. (in Chinese))
  • Related Articles

    [1]HAN Hong-xing, CHEN-Wei, QIU Zi-feng, FU Xu-dong. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 234-239. DOI: 10.11779/CJGE2016S2038
    [2]HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053
    [3]SHAO Hong-jie, LIU Run, LIN Min-bo, XU Yu. Numerical simulation method for soil strength reduction during pile driving in offshore engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 354-359.
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]DAI Xin, XU wei, ZOU Li, SHEN Qing-feng. Numerical simulation of shafts during excavation process[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 154-157.
    [6]XU Neng-xiong. 3D engineering geological modeling method suitable for numerical simulation       [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1710-1716.
    [7]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.
  • Cited by

    Periodical cited type(18)

    1. 苏凯,杨逢杰,龚睿,朱洪泽. 穿越岩溶地区隧洞施工开挖防渗措施研究. 中国农村水利水电. 2024(05): 215-220+225 .
    2. 张江涛,柴正富,蒲振华,江杰,甘雨. 跨管状垂直落水溶洞隧道施工变形分析及加固措施. 公路工程. 2024(05): 8-16+33 .
    3. 王圣涛,张俊儒,彭波,燕波. 拱隧一体结构跨越巨型溶洞段处治技术研究. 现代隧道技术. 2024(05): 263-273 .
    4. 孙克国,甄映州,魏勇,肖支飞,杨朋,方纯彬,蔡定淮,刘广明. 富水岩溶区基坑稳定性影响规律与分析. 现代隧道技术. 2023(01): 149-158+194 .
    5. 黄城,刘远明,袁侨蔚,欧洵. 基于强度理论的隧道与溶洞间安全距离计算. 中国水运. 2023(03): 143-145 .
    6. 周科,李成强,张玉广. 山区陡坡路堤滑坡失稳分析. 中国水运. 2023(05): 158-160 .
    7. 王祥,陈发达,吴贤国,冯宗宝,陈虹宇. 基于云模型和D-S证据理论的岩溶盾构隧道掌子面稳定性评价. 工业建筑. 2023(11): 65-72 .
    8. 叶雄,余浩,王桂林,龚晟. 穿煤隧道层面性质对岩柱安全厚度的影响研究. 地下空间与工程学报. 2023(S2): 926-933 .
    9. 杨曦,赵智辉,刘跃成,周创,康跃明,范明外. 双隧道开挖进尺对其掌子面稳定现场监测和数值分析——以安石隧道为例. 科技和产业. 2022(01): 357-362 .
    10. 孙希波,刘宏翔,李鹏飞,郭彩霞. 隧道穿越富水断层隔水岩体冲切剪切破坏研究. 隧道建设(中英文). 2022(06): 984-993 .
    11. 寇小勇,樊浩博,李芒原,郎志军,张家奎,高新强,郜现磊,朱正国. 富水岩溶隧道掌子面安全岩柱厚度研究. 科学技术与工程. 2022(24): 10706-10717 .
    12. 房忠栋,杨为民,王旌,石锦江,巴兴之,王浩. 深埋隧道前方承压溶洞隔水岩体最小安全厚度研究. 中南大学学报(自然科学版). 2021(08): 2805-2816 .
    13. 周平,王志杰,侯伟名,周飞聪,杜彦良,冯冀蒙,徐海岩. 昔格达地层隧道局部浸湿失稳特征及突变预测研究. 岩土工程学报. 2020(03): 503-512 . 本站查看
    14. 梅卫锋,黎浩. 考虑岩墙厚度的大断面隧道掌子面稳定性分析. 公路工程. 2020(02): 200-206 .
    15. 陈峥,何平,颜杜民,高红杰,聂奥祥. 超前支护下隧道掌子面稳定性极限上限分析. 岩土力学. 2019(06): 2154-2162 .
    16. 杨松,彭忠举,欧阳汛,艾祖斌,曹振生,陈全胜,周浩. 基于个旧组地质的长大隧道施工技术经济评价. 价值工程. 2019(21): 126-128 .
    17. 王成洋,傅鹤林,张佳华. 非饱和浅埋隧道稳定性的上限分析. 采矿与安全工程学报. 2019(06): 1161-1167 .
    18. 杨松,彭忠举,欧阳汛. 基于个旧组岩溶地质的长大隧道施工要点研究. 交通节能与环保. 2019(06): 115-118 .

    Other cited types(19)

Catalog

    Article views PDF downloads Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return