• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Zan-cheng, SUN De-an, TIAN Jin. Calibration curves of two filter papers at high suction and temperature and their application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1020-1027. DOI: 10.11779/CJGE201406005
Citation: ZHU Zan-cheng, SUN De-an, TIAN Jin. Calibration curves of two filter papers at high suction and temperature and their application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1020-1027. DOI: 10.11779/CJGE201406005

Calibration curves of two filter papers at high suction and temperature and their application

More Information
  • Received Date: December 08, 2013
  • Published Date: June 19, 2014
  • Buffer/backfill materials may experience temperature change in several circumstances, and thus it is necessary to study the hydro mechanical behaviour of soils at different temperatures. The filter paper method is an indirect way to conduct the suction measurement. The filter method can cover the full range of suction measurement, and it is inexpensive and relatively simple. The calibration curves for Whatman No. 42 and Double-circle No. 203 filter papers are investigated at room temperature by many researchers. However, the suction and temperature are both relatively low. This study presents the results of an experimental investigation of thermal effects on the calibration curves of the filter papers Whatman No. 42 and Double-circle No. 203 and the application of the curves to obtain the total suction of a compacted bentonite at different temperatures. The calibration curves between the suction and moisture content for the filter papers are determined at 20,40,60 and 80, respectively, by the vapor equilibrium technique using fifteen types of saturated salt solutions. The results show that the water-retention capacity of the filter paper decreases with the increasing temperature. The obtained calibration curves are used to determine the water-retention behaviour of GMZ Ca-bentonite, which is considered as a possible backfill material in the high level radioactive waste deep geological disposal project in China, at 20, 40, 60 and 80, respectively. It is found that the water-retention curves of the bentonite are both the same using the two kinds of filter papers, and they decrease clearly with temperature, especially when it is above 60. In addition, the water-retention capacity in the range of higher suction is slightly affected by temperatures.
  • [1]
    TANG A M, CUI Y J. Controlling suction by vapor equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296.
    [2]
    VILLAR M V, LLORET A. Dismantling of the first section of the FEBEX in situ test: THM laboratory tests on the bentonite blocks retrieved[J]. Physics and Chemistry of the Earth, 2007, 32: 716-729.
    [3]
    VILLAR M V, GÓMEZ-ESPINA R. Effect of temperature on the water retention capacity of FEBEX and MX-80 bentonites[C]// 1st European Conference on Unsaturated soils: Advances in Geo-engineering. London, 2008: 257-262.
    [4]
    YE W M, WAN M, CHEN B, et al. Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite[J]. Journal of Central South University of Technology, 2009, 16: 821-826.
    [5]
    CHANDLER R J, GUTIERREZ C I. The filter-paper method of suction measurement[J]. Technical Notes, 1986: 265-267.
    [6]
    HOUSTON S L, HOUSTON W N, WANGER A M. Laboratory filter paper suction measurements[J]. Geotechnical Testing Journal, 1994, 17(2): 185-194.
    [7]
    LEONG E C, HE L, RAHARDJO H. Factors affecting the filter paper method for total and matric suction measurements[J]. Geotechnical Testing Journal, 2002, 25(3): 321-332.
    [8]
    LIOKS W J, LU N. Filter paper technique for measuring total suction[R]. Washington: Transportation Research Record, No.1876, 2002: 120-12.
    [9]
    HAGHIGHI A, MEDERO G, MARINHO F, et al. Temperature effects on suction measurement using the filter paper technique[J]. Geotechnical Testing Journal, 2012, 35(1): 83-90.
    [10]
    蒋刚, 王钊, 邱金营. 国产滤纸吸力-含水量关系率定曲线的研究[J]. 岩土力学, 2000, 21(1): 72-75. (JIANG Gang, WANG Zhao, QIU Jin-ying. Suction calibration curve of homemade filter paper[J]. Rock and Soil Mechanics, 2000, 21(6): 72-75. (in Chinese))
    [11]
    程金茹, 沈珍瑶, 李满喜. 滤纸吸力率定曲线的研究[J]. 岩土力学, 2002, 23(6): 800-802. (CHENG Jin-ru, SHEN Zhen-yao, LI Man-xi. Suction calibration for filter paper[J]. Rock and Soil Mechanics, 2002, 23(6): 800-802. (in Chinese))
    [12]
    王钊, 杨金鑫, 况娟娟, 等. 滤纸法在现场基质吸力量测中的应用[J]. 岩土工程学报, 2003, 25(4): 405-408. (WANG Zhao, YANG Jin-xin, KUANG Juan-juan, et al. Application of filter paper method in field measurement of matric suction[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 405-408. (in Chinese))
    [13]
    白福青, 刘斯宏, 袁骄. 滤纸总吸力吸湿曲线的率定试验[J]. 岩土力学, 2011, 32(8): 2336-2339. (BAI Fu-qing, LIU Si-hong, YUAN Jiao. Suction calibration for filter paper[J]. Rock and Soil Mechanics, 2011, 32(8): 2336-2339. (in Chinese))
    [14]
    BAI F Q, LIU S H. Measurement of the shear strength of an expansive soil by combining a filter paper method and direct shear tests[J]. Geotechnical Testing Journal, 2012, 35(3): 451-459.
    [15]
    FAWCETT R G, COLLIS-GEORGE N. A filter-paper method for determining the moisture characteristics of soil[J]. Australian Journal of Experimental Agriculture and Animal Husbandry, 1967, 7: 162-167.
    [16]
    HAMBLIN A P. Filter-paper method for routine measurement of field water potential[J]. Journal of Hydrology, 1981, 53: 355-360.
    [17]
    ASTM D5298—94 Standard test method for measurement of soil potential(suction) using filter paper[S]. 1992.
    [18]
    AGUS S C, SCHANZ T. Discussion of paper ‘free energy of water suction in filter papers’ by R Bulut and W K Wray[J]. Geotechnical Testing Journal, 2005, 28: 517-518.
    [19]
    MARINHO F A M, OLIVEIRA M. The filter paper method revisited[J]. Geotechnical Testing Journal, 2006, 29(3): 250-258.
    [20]
    DELAGE P, HOWAT M D, CUI Y J. The relationship between suction and swelling properties in a heavily compacted unsaturated clay[J]. Engineering Geology, 1998, 50(1/2): 31-48.
    [21]
    GREENSPAN L. Humidity fixed points of binary saturated aqueous solutions[J]. Journal of Research of the National Bureau of Standards, 1977, 81(1): 89-96.
    [22]
    WEXLER A. Vapor pressure equation for water in the range 0 to 100℃[J]. Journal of Research of the National Bureau of Standards, 1976, 80(5/6): 775-785.
    [23]
    ASTM E104—02 Standard practice for maintaining constant relative humidity by means of aqueous solutions[S]. ASTM International, 2012.
    [24]
    刘月妙, 温志坚. 用于高放射性废物深地质处置的粘土材料研究[J]. 矿物岩石, 2003, 23(4): 42-45. (LIU Yue-miao, WEN Zhi-jian. Study on clay-based materials for the repository of high level radioactive waste[J]. Journal Mineral Petrol, 2003, 23(4): 42-45. (in Chinese))
    [25]
    方雷, 孙德安, 孙文静. 高庙子钙基膨润土的膨胀特性[J]. 上海大学学报(自然科学版), 2013, 19(5): 508-512. (FANG Lei, SUN De-an, SUN Wen-jing. Swelling characteristics of Gaomiaozi Ca-bentonite[J]. Journal of Shanghai University (Natural Science), 2013, 19(5): 508-512. (in Chinese))
    [26]
    孙德安, 孟德林, 孙文静, 等. 两种膨润土的土-水特征曲线[J]. 岩土力学, 2011, 32(4): 973-978. (SUN De-an, MENG De-lin, SUN Wen-jing, et al. Soil-water characteristic curves of two bentonites[J]. Rock and Soil Mechanics, 2011, 32(4): 973-978. (in Chinese))
  • Cited by

    Periodical cited type(22)

    1. 卢汉青,包卫星,陈锐,郭强,尹严. 基于核磁共振技术的冻融板岩损伤特性试验研究. 地下空间与工程学报. 2025(01): 78-86+99 .
    2. 贾朝军,庞锐锋,俞隽,雷明锋,李忠. 基于离散元的岩石冻融损伤劣化机制研究. 岩土力学. 2024(02): 588-600 .
    3. 赵越,司运航,张译丹,赵京禹. 水化-冻融耦合条件下大理岩蠕变损伤本构模型. 吉林大学学报(地球科学版). 2024(01): 231-241 .
    4. 樊赖宇,吴志军,储昭飞,翁磊,王智洋,刘泉声,陈结. 动态冲击下红砂岩蠕变特性及损伤本构模型. 岩土力学. 2024(06): 1608-1622 .
    5. 刘文博,张树光,黄翔,刘轶品. 基于蠕变曲线对称的蠕变模型研究及参数敏感性分析. 煤炭科学技术. 2024(07): 48-56 .
    6. 宋勇军,操警辉,程柯岩,杨慧敏,毕冉,张琨. 砂岩冻结/解冻过程蠕变特性研究. 水文地质工程地质. 2024(06): 93-103 .
    7. 王波,任永政,田志银,马世纪,王军,黄万朋,王灵. 流变扰动条件下岩石微观损伤试验研究. 煤炭学报. 2024(S2): 852-861 .
    8. 杨志全,甘进,樊详珑,朱颖彦,杨溢,丁渝池. 岩石冻融损伤机理研究进展及展望. 防灾减灾工程学报. 2023(01): 176-188 .
    9. 赵志波. 冻融条件下隧道围岩单轴蠕变力学特性试验及本构模型. 黑龙江科技大学学报. 2023(02): 299-305 .
    10. 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究. 工矿自动化. 2023(05): 133-138+152 .
    11. 闫建兵,张小强,宋选民,王开,姜玉龙,岳少飞. 低围压条件下无烟煤三轴蠕变特性试验研究(英文). Journal of Central South University. 2023(05): 1618-1630 .
    12. 张卫泽,王琳庆,郭文重,陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究. 水文地质工程地质. 2023(04): 137-148 .
    13. 赵越,李磊,闫晗,肖万山,苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性. 吉林大学学报(地球科学版). 2023(04): 1195-1203 .
    14. 包卫星,卢汉青,郭强,尹严. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究. 工程地质学报. 2023(04): 1213-1224 .
    15. 王丹,冯子军,张子翔. 砂岩的三维非线性损伤蠕变特性. 矿业研究与开发. 2023(10): 139-144 .
    16. 付宏渊,段鑫波,史振宁. 冻融循环下粉砂质泥岩强度劣化特性及细观机理研究. 工程地质学报. 2023(06): 1833-1841 .
    17. 张进元. 冻融作用下公路块石路基损伤特性研究. 青海交通科技. 2023(06): 131-134 .
    18. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 .
    19. 唐志强,吉锋,许汉华,冯文凯,何萧. 豫南燕山期花岗岩蠕变特性及非线性蠕变损伤模型. 科学技术与工程. 2022(16): 6421-6429 .
    20. 尹彦波. 不同应变率下冻融损伤大理岩的动态压缩特性研究. 矿业研究与开发. 2022(08): 139-145 .
    21. 马志奇,杨小彬,刘腾辉,李志辉. 粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究. 矿业科学学报. 2022(06): 730-737 .
    22. 王飞,高明忠,邱冠豪,汪亦显,周昌台,王之禾. 初始损伤–载荷–冻融作用下红砂岩的孔隙结构及力学特性. 工程科学与技术. 2022(06): 194-203 .

    Other cited types(43)

Catalog

    Article views (443) PDF downloads (481) Cited by(65)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return