• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Gang, ZENG Chao-feng, XUE Xiu-li. Settlement mechanism of soils induced by local pressure-relief of confined aquifer and parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 802-817. DOI: 10.11779/CJGE201405002
Citation: ZHENG Gang, ZENG Chao-feng, XUE Xiu-li. Settlement mechanism of soils induced by local pressure-relief of confined aquifer and parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 802-817. DOI: 10.11779/CJGE201405002

Settlement mechanism of soils induced by local pressure-relief of confined aquifer and parameter analysis

More Information
  • Received Date: June 29, 2013
  • Published Date: May 20, 2014
  • By carrying out the in-situ pumping tests on confined aquifer in Tianjin, it is found that the settlement of soils of overlying confined aquifer gradually increases up to down during local relieving, meanwhile, heave appeares in underlying soils. Further analysis, by using three-dimensional fluid-solid coupling numerical model, indicates that the soil-arch effect will form in soils, which has no drawdown and overlies confined aquifer during its local relieving, in the meantime, the additional tensile stress and tensile deformation appeare there, and moreover, the seepage force is the reason why the soils underlying the confined aquifer heave. Furthermore, the law of ground movement induced by long-term local pressure-relief of confined aquifer under different water supplies and site conditions is studied, and the location of the maximum soil settlement under each condition is obtained. The maximum soil settlement appears at the top of stratum which has drawdown under arbitrary water supply conditions, relieving time and permeability ranges of the overlying aquitard. Because the spatial effect of the overlying soils of confined aquifer induced by local pressure-relief of the confined aquifer cannot be taken into account using the layering summation method (LSM), it will underestimate the settlement of soils below the ground surface during its relieving if LSM is adopted based on the settlement correction factor derived from the pumping tests.
  • [1]
    CHAI J C, SHEN S L, ZHU H H, et al. Land subsidence due to groundwater drawdown in Shanghai[J]. Géotechnique, 2004, 54(2): 143-147.
    [2]
    叶淑君, 薛禹群, 张 云, 等. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报, 2005, 27(2): 140-147. (YE Shu-jun, XUE Yu-qun, ZHANG Yun, et al. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 140-147. (in Chinese))
    [3]
    杨建民, 郑 刚, 焦 莹. 天津站抽水试验分析[J]. 土木工程学报, 2008, 41(7): 67-70. (YANG Jian-min, ZHENG Gang, JIAO ying. Test and analysis of the aquifer at Tianjin Station[J]. China Civil Engineering Journal, 2008, 41(7): 67-70. (in Chinese))
    [4]
    杨建民, 郑 刚, 焦 莹. 天津站抽水试验数值反演分析[J]. 土木工程学报, 2010, 43(9): 125-130. (YANG Jian-min, ZHENG Gang, JIAO ying. Numerical back analysis of pumping tests at Tianjin Railway Station[J]. China Civil Engineering Journal, 2010, 43(9): 125-130. (in Chinese))
    [5]
    张 刚, 梁志荣. 承压水降水引起地表沉降现场试验研究[J]. 岩土工程学报. 2008, 30(增刊): 323-327. (ZHANG Gang, LIANG Zhi-rong. In-situ tests on settlement of ground resulting from dewatering of confined water[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S0): 323-327. (in Chinese))
    [6]
    周念清, 唐益群, 娄荣祥, 等. 徐家汇地铁站深基坑降水数值模拟与沉降控制[J]. 岩土工程学报, 2011, 32(12): 1950-1956. (ZHOU Nian-qing, TANG Yi-qun, LOU Rong-xiang, et al. Numerical simulation of deep foundation pit dewatering and land subsidence control of Xujiahui Metro Station [J]. Chinese Journal of Geotechnical Engineering, 2011, 32(12): 1950-1956. (in Chinese))
    [7]
    王建秀, 吴林高, 朱雁飞, 等. 地铁车站深基坑降水诱发沉降机制及计算方法[J]. 岩石力学与工程学报, 2009, 28(5): 1010-1019. (WANG Jian-xiu, WU Lin-gao, ZHU Yan-fei, et al. Mechanism of dewatering-induced subsidence in deep subway station pit and calculation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 1010-1019. (in Chinese))
    [8]
    WONGSORAJ J, SOGA K, MAIR R J. Modelling of long-term ground response to tunnelling under St James's Park, London[J]. Géotechnique, 2007, 57(1): 75-90.
    [9]
    NIU W J, WANG Z, CHEN F, et al. Settlement analysis of a confined sand aquifer overlain by a clay layer due to single well pumping[J]. Mathematical Problems in Engineering, 2013(1): 1-13.
    [10]
    王春波, 丁文其, 刘文军, 等. 非稳定承压水降水引起土层沉降分布规律分析[J]. 同济大学学报(自然科学版), 2013, 41(3): 361-367. (WANG Chun-bo, DING Wen-qi, LIU Wen-jun, et al. Distribution law of soil settlement caused by unsteady dewatering of confined water[J]. Journal of Tongji University (Natural Science), 2013, 41(3): 361-367. (in Chinese))
    [11]
    魏子新. 上海市第四承压含水层应力-应变分析[J]. 水文地质工程地质, 2002(1): 1-4. (WEI Zi-xin. The stress-strain analysis of the 4th confined aquifer in Shanghai City[J]. Hydrogeology and Engineering Geology, 2002(1): 1-4. (in Chinese))
    [12]
    郑 刚, 曾超峰, 刘 畅, 等. 天津首例基坑工程承压含水层回灌实测研究[J]. 岩土工程学报, 2013, 35(增刊2): 491-495. (ZHENG Gang, ZENG Chao-feng, LIU Chang, et al. Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 491-495. (in Chinese))
    [13]
    PREENE M. Assessment of settlements caused by groundwater control[J]. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering. 2000, 143(4): 177-190.
    [14]
    WEN H C, WOLFGANG K. 3D groundwater modeling with PMWIN-A simulation system for modeling groundwater flow and pollution[M]. USA: Springer, 2001: 120-132.
    [15]
    骆祖江, 刘金宝, 李 朗. 第四纪松散沉积层地下水疏降与地面沉降三维全耦合数值模拟[J]. 岩土工程学报, 2008, 30(2): 193-198. (LUO Zu-jiang, LIU Jin-bao, LI Lang. Three-dimensional full coupling numerical simulation of groundwater dewatering and land-subsidence in quaternary loose sediments[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 193-198. (in Chinese))
    [16]
    许 胜, 缪俊发, 魏建华, 等. 深基坑降水与地面沉降的三维黏弹性全耦合数值模拟[J]. 岩土工程学报, 2008, 30(增刊): 41-45. (XU Sheng, MIAO Jun-fa, WEI Jian-hua, et al. Numerical simulation of dewatering of foundation pits and land subsidence based on 3D viscoelastic coupling model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S0): 41-45. (in Chinese))
    [17]
    段永侯, 王家兵, 王亚斌, 等. 天津市地下水资源与可持续利用[J]. 水文地质工程地质, 2004, 3: 29-39. (DUAN Yong-hou, WANG Jia-bing, WANG Ya-bin, et al. Groundwater resources and its sustainable development in Tianjin[J]. Hydrogeology and Engineering Geology, 2004, 3: 29-39. (in Chinese))
    [18]
    王家兵, 李 平. 天津平原地面沉降条件下的深层地下水资源组成[J]. 水文地质工程地质, 2004, 5: 35-37. (WANG Jia-bing, LI Ping. Composition of groundwater resources in deep-seated aquifers under the condition of land subsidence in Tianjin Plain[J]. Hydrogeology and Engineering Geology, 2004, 5: 35-37. (in Chinese))
    [19]
    HARBAUGH A W. MODFLOW-2005, The US geological survey modular ground-water model- the groundwater flow process[M]. Virginia: US Geological Survey, 2005.
    [20]
    薛禹群. 地下水动力学原理[M]. 北京: 地质出版社, 1986. (XUE Yu-qun. Dynamic principle of ground water[M]. Beijing: Geological Publishing House, 1986. (in Chinese))
    [21]
    HOFFMANN J, LEAKE S A, GALLOWAY D L. MODFLOW-2000 ground-water model-user guide to the subsidence and aquifer-system compaction package[M]. Tucson: US Geological Survey, 2003.
    [22]
    LEAKE S A. Simulation of vertical compaction in models of regional ground-water flow[C]// Proceedings of the Fourth International Symposium on Land Subsidence. IAHS Publ, 1991.
    [23]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
    [24]
    陈仲颐, 周景星, 王洪瑾. 土力学[M]. 北京: 清华大学出版社, 1994. (CHEN Zhong-yi, ZHOU Jing-xing, WANG Hong-jin. Soil mechanics[M]. Beijing: Tsinghua University Press, 1994. (in Chinese))
    [25]
    郑 刚, 刘庆晨, 邓 旭. 基坑开挖对下卧运营地铁隧道影响的数值分析与变形控制研究[J]. 岩土力学, 2013, 34(5): 1459-1468. (ZHENG Gang, LIU Qing-chen, DENG Xu. Numerical analysis of effect of excavation on underlying existing metro tunnel and deformation control[J]. Rock and Soil Mechanics, 2013, 34(5): 1459-1468 (in Chinese))
    [26]
    郑 刚, 颜志雄, 雷华阳, 等. 天津市区第一海相层粉质黏土卸荷变形特性的试验研究[J]. 岩土力学, 2008, 29(5): 1237-1242. (ZHENG Gang, YAN Zhi-xiong, LEI Hua-yang, et al. Experimental studies on unloading deformation properties of silty clay of first marine layer in Tianjin urban area[J]. Rock and Soil Mechanics, 2008, 29(5): 1237-1242. (in Chinese))
    [27]
    TRLAND J B B. Ninth laurits Bjerrum memorial lectural:“small is beautiful”-the stiffness of soils at small strains[J]. Canadian Geotechnical Journal, 1989, 26(4): 499-516.
    [28]
    张瑛颖. 杭州地区粉砂土中基坑降水面的数值模拟[D]. 杭州: 浙江大学, 2006. (ZHANG Ying-ying. Numeric simulation of foundation pit dewatering surface in silty sand in Hangzhou[D]. Hangzhou: Zhejiang University, 2006. (in Chinese))
    [29]
    郑 刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12): 2153-2163. (ZHENG Gang, ZENG Chao-feng. Study of lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153-2163. (in Chinese))
    [30]
    姚天强, 石振华, 曹惠宾, 等. 基坑降水手册[M]. 北京: 中国建筑工业出版社, 2006. (YAO Tian-qiang, SHI Zhen-hua, CAO Hui-bin, et al. Handbook of the dewatering of foundation pit[M]. Beijing: China Architecture and Building Press, 2006. (in Chinese))

Catalog

    Article views (462) PDF downloads (605) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return