• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Jie, LI Guo-ying, SHEN Ting. Stress-deformation properties of super-high CFRDs under complex terrain conditions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 775-781. DOI: 10.11779/CJGE201404025
Citation: YANG Jie, LI Guo-ying, SHEN Ting. Stress-deformation properties of super-high CFRDs under complex terrain conditions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 775-781. DOI: 10.11779/CJGE201404025

Stress-deformation properties of super-high CFRDs under complex terrain conditions

More Information
  • Received Date: July 21, 2013
  • Published Date: April 21, 2014
  • Valley terrain is one of the most important factors which affect the stress and deformation of CFRDs. Different valley terrains lead to different boundary conditions of CFRDs and further influence the state of stress and deformation. 3D-FEM is employed to analyze the stress and deformation of a super-high CFRD 256 m in height under complex topography. It is indicated that the asymmetric and irregular river valley has large influence on the stress and deformation coordination of CFRD, especially the change of stress and deformation gradient is larger near the ancient river terraces at the right bank, which is harmful to the safety of the concrete slab, and thus it is necessary to take measures during design and construction. By comparing the results of two adjustment schemes, the influence of the ancient riverbed on the right bank is analyzed. At the same time, the steep slope at the left bank causes the tensile stress of panel and large displacement of peripheral joints. Based on the results of three adjustment schemes, the influence degree of the steep bank slope is analyzed.
  • [1]
    沈婷, 李国英. 超高面板堆石坝混凝土面板应力状态影响因素分析[J]. 岩土工程学报, 2010, 32(9): 1345-1349. (SHEN Ting, LI Guo-ying. Factors for stress behavior of concrete face slab of super-high CFRD[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1345-1349. (in Chinese))
    [2]
    刘恩龙, 陈生水, 李国英, 等. 循环荷载作用下考虑颗粒破碎的堆石体本构模型[J].岩土力学, 2012, 33(7): 1972-1978. (LIU En-long, CHEN Sheng-shui, LI Guo-ying, et al. A constitutive model for rockfill materials incorporating grain crushing under cyclic loading[J]. Rock and Soil Mechanics, 2012, 33(7): 1972-1978. (in Chinese))
    [3]
    米占宽, 李国英, 陈生水. 基于破碎能耗的粗颗粒料本构模型[J].岩土工程学报, 2012, 34(10): 1801-1811. (MI Zhan-kuan, LI Guo-ying, CHEN Sheng-shui. Constitutive model for coarse granular materials based on breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1801-1811. (in Chinese))
    [4]
    米占宽, 李国英. 堆石料劣化及其对大坝安全运行影响的研究[J]. 岩土工程学报, 2008, 30(11): 1588-1593. (MI Zhan-kuan, LI Guo-ying. Deterioration of rockfill and its effect on safe operation of dams[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1588-1593. (in Chinese))
    [5]
    FU Zhong-zhi, LIU Si-hong. Formulations of a hydromecha- nical interface element[J]. Acta Mechanica Sinica, 2011, 27(5): 697-705.
    [6]
    朱晟. 水布垭面板堆石坝施工与运行性状反演研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3689-3695. (ZHU Sheng. Back analysis on construction and operation properties of Shuibuya concrete face Rockfill DAM[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 3689-3695. (in Chinese))
    [7]
    谢晓华, 李国英. 成屏混凝土面板堆石坝应力变形分析[J].岩土工程学报, 2001, 23(2): 243-246. (XIE Xiao-hua, LI Guo-ying. Stress-deformation analysis of Cheng ping concrete-faced rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 243-246. (in Chinese))
    [8]
    李国英. 覆盖层上面板坝的应力变形性状及其影响因素[J].水利水运科学研究, 1997, 4: 348-356. (LI Guo-ying. Stress-strain behavior and its affecting factor of CFRD built on riverbed alluvium[J]. Study on Hydraulic Research, 1997, 4: 348-356. (in Chinese))
    [9]
    赵魁芝, 李国英. 梅溪覆盖层上混凝土面板堆石坝流变变形反馈分析及安全性研究[J]. 岩土工程学报, 2007, 29(8): 1230-1235. (ZHAO Kui-zhi, LI Guo-ying. Back analysis of creep deformation and study on safety of Meixi CFRD built on riverbed alluvium[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1230-1235. (in Chinese))
    [10]
    徐泽平, 邵宇, 胡本雄, 等. 狭窄河谷中高面板堆石坝应力变形特性研究[J]. 水利水电技术, 2005, 36(5): 30-33. (XU Ze-ping, SHAO Yu, HU Ben-xiong, et al. Study on stress and deformation properties of high concrete face rock-fill dam in narrow valley[J]. Water Resources and Hydropower Engineering, 2005, 36(5): 30-33. (in Chinese))
    [11]
    岑威钧, 任旭华, 李启升. 复杂地形条件下高面板堆石坝的应力变形特性[J]. 河海大学学报(自然科学版), 2007, 35(4): 452-455. (CEN Wei jun, REN Xu-hua, LI Qi-sheng. Stress and deformation analysis of high CFRD under complicated topographic condition[J]. Journal of Hohai University (Natural Sciences), 2007, 35(4): 452-455. (in Chinese))
    [12]
    程嵩, 张嘎, 张建民, 等. 河谷地形对面板堆石坝应力位移影响的分析[J]. 水利发电学报, 2008, 27(5): 53-58. (CHENG Song, ZHANG Ga, ZHANG Jian-min, et al. Effect of foundation topography on the stress-displacement response of concrete faced rockfill dam[J]. Journal of Hydroelectric Engineering, 2008, 27(5): 53-58. (in Chinese))
    [13]
    朱百里, 沈珠江. 计算土力学[M]. 上海: 上海科技出版社, 1990. (ZHU Bai-li, SHEN Zhu-jiang. Computational soil mechanics[M]. Shanghai: Shanghai Science and Technology Press, 1990. (in Chinese))
    [14]
    傅华, 凌华, 韩华强. 新疆库玛拉克河大石峡水电站砼面板砂砾石坝筑坝材料工程特性试验报告[R]. 南京: 南京水利科学研究院, 2011. (FU Hua, LING Hua, HAN Hua-qiang. Report of concrete face sand-gravel dam of dashixia hydroelectric power station on Xinjjiang Kumalak River[R]. Nanjing: Nanjing Hydraulic Research Institute, 2011. (in Chinese))
  • Related Articles

    [1]REN Yang, LI Tian-bin, YANG Ling, WEI Da-qiang, TANG Jie-ling. Stability analysis of ultra-high-steep reinforced soil-filled slopes based on centrifugal model tests and numerical calculation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 836-844. DOI: 10.11779/CJGE202205006
    [2]ZHAO Ming-hua, YANG Chao-wei, CHEN Yao-hao, YIN Ping-bao. Field tests on double-pile foundation of bridges in high-steep cross slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 329-335. DOI: 10.11779/CJGE201802014
    [3]LI Bin, WANG Guo-zhang, FENG Zhen, WANG Wen-pei. Limit equilibrium and stability analysis of steep stratified rock slope[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 839-846. DOI: 10.11779/CJGE201505009
    [4]HUANG Shuai, SONG Bo, CAI De-gou, YE Yang-sheng. Dynamic response and permanent displacement of high-steep slopes under near- and far-field earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 768-773.
    [5]LIU Ke-Ling, WANG Chun-lei. Critical slip surface of high-steep slopes based on theory of stress effect coefficient[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 415-421.
    [6]LI Hong-wei. Deformation and failure mechanism of steeply dipping bedding high slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 146-151.
    [7]LIU Jianhua, ZHAO Minghua, YANG Minghui. Model tests on bridge pile foundation in high and steep rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 372-377.
    [8]LI Husheng, YE Qianyuan. Calculation of random-fuzzy reliability of steep slopes[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1019-1022.
    [9]QI Shengwen, WU Faquan, CHANG Zhonghua, LIU Haiyan, SI Weibing. Mechanism and model for deformation of bank slope with slightly inclined soil layers in Fengjie County of Three Gorges[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 88-91.
    [10]Zhang Yongxing. Study on Rock Mass Models and lts Parameters in High and Steep Rocky Slope[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(4): 77-84.

Catalog

    Article views (319) PDF downloads (289) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return