• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
ZHANG Ran, LI Gen-sheng, ZHAO Zhi-hong, SHENG Mao, FAN Xin, CHI Huan-peng. New criteria for hydraulic fracture crossing natural fractures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 585-588. DOI: 10.11779/CJGE201403024
Citation: ZHANG Ran, LI Gen-sheng, ZHAO Zhi-hong, SHENG Mao, FAN Xin, CHI Huan-peng. New criteria for hydraulic fracture crossing natural fractures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 585-588. DOI: 10.11779/CJGE201403024

New criteria for hydraulic fracture crossing natural fractures

More Information
  • Received Date: April 09, 2013
  • Published Date: March 19, 2014
  • The complexity of a hydraulic fracture network depends on the behaviors of induced hydraulic fractures as they intersect natural fractures, so it is important to understand the mechanism of fracture intersection under particular field conditions of in-situ stresses, rock and natural fracture properties. An accurate criterion for the fracture propagation across natural fractures is established, and the direction of the reinitiated fracture is also studied. The results show that for a given approaching angle there exits a certain range of stress ration when crossing occurs, beyond this range crossing will not occur. Under high horizontal differential principle stress and approaching angle, hydraulic fracture is more likely to cross the natural fracture. As the stress ration increases, the direciton of reinitiated fracture draws closer to the direction of the incremental principle stress. This new criterion can be applied in the general analysis of fracture network and simulation of numerical fracture network.
  • [1]
    吴 奇, 胥 云, 王腾飞, 等. 增产改造理念的重大变革:体积改造技术概论[J]. 天然气工业, 2011, 31(4): 7-12. (WU Qi, XU Yun, WANG Teng-fei, et al. The revolution of reservoir stimulation: An introduction of volume fracturing[J]. Natural Gas Industry, 2011, 31(4): 7-12. (in Chinese))
    [2]
    CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture-treatment design[R]. SPE 115769, 2008.
    [3]
    雷 群, 胥 云, 蒋廷学, 等. 用于提高低—特低渗透油气藏改造效果的缝网压裂技术[J]. 石油学报, 2009, 30(2): 237-241. (LEI Qun, XU Yun, JIANG Ting-xue, et al. “Fracture network” fracturing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2009, 30(2): 237-241. (in Chinese))
    [4]
    DANESHY A A. Off-Balance Growth: A new concept in hydraulic fracturing[J]. Journal of Petroleum Technology, 2003, 55(4): 78-85.
    [5]
    DANESHY A A. Analysis of off-balance fracture extension and fall-off pressures[C]// SPE International Symposium and Exhibition on Formation Damage Control. Lafayette, Louisiana, 2004.
    [6]
    WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 44(2): 209-220.
    [7]
    HOSSAIN M M, RAHMAN M K, RAHMAN S S. Volumetric growth and hydraulic conductivity of naturally fractured reservoirs during hydraulic fracturing: A case study using Australian conditions[C]// SPE Annual Technical Conference and Exhibition. Dallas, Texas, 2000.
    [8]
    BLANTON T L. An experimental study of interaction between hydraulically induced and pre-existing fractures[C]// SPE Unconventional Gas Recovery Symposium. Pittsburgh, Pennsylvania, 1982.
    [9]
    BLANTON T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[C]// SPE Unconventional Gas Technology Symposium. Louisville, Kentucky, 1986.
    [10]
    周 健, 陈 勉, 金 衍, 等. 多裂缝储层水力裂缝扩展机理试验[J]. 中国石油大学学报(自然科学版), 2008, 32(4): 51-54. (ZHOU Jian, CHEN Mian, JIN Yan, et al. Experiment of propagation mechanism of hydraulic fracture in multi-fracture reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(4): 51-54. (in Chinese))
    [11]
    周 健, 陈 勉, 金 衍, 等. 裂缝性储层水力裂缝扩展机理试验研究[J]. 石油学报, 2007, 28(5): 109-113. (ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2007, 28(5): 109-113. (in Chinese))
    [12]
    RENSHAW C E, POLLARD. An experimentally verified criterion for propagation across unbonded frictional interfaces in brittle,linear elastic materials[J]. International Journal of Rock Mechanics Mining Science and Geomechanics, 1995, 32(3): 237-249.
  • Related Articles

    [1]FU Zhongzhi, ZHANG Yijiang, CHEN Jinyi, WANG Yongsheng. Influences of constitutive model for rockfill materials on calculated stress and deformation of concrete-faced dams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2089-2100. DOI: 10.11779/CJGE20230644
    [2]DENG Chengjin, ZHOU Heng, DANG Faning, MIAO Zhe, YUAN Qiushuang. Mechanical deformation characteristics of rockfill and dam body zoning of high concrete face gravel dam[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 54-58. DOI: 10.11779/CJGE2023S10054
    [3]CHEN Sheng-shui. Innovations in prediction theories and prevention technologies for deformation-induced failure process of high earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1211-1219. DOI: 10.11779/CJGE202207003
    [4]KONG Xian-jing, PANG Rui, XU Bin, ZHOU Yang, ZOU De-gao. Stochastic seismic stability analysis of dam slopes considering softening of rockfills[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 414-421. DOI: 10.11779/CJGE201903002
    [5]PAN Jia-jun, WANG Guan-qi, CHENG Zhan-lin, YU Ting, JIANG Ji-wei. Deformation prediction of concrete face rockfill dams based on nonlinear dilatancy model[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 17-21. DOI: 10.11779/CJGE2017S1004
    [6]HU Zai-qiang, LAN Guan-qi, YU Miao, LI Hong-ru. Deformation law of upstream slope during construction of high concrete-faced rock-fill dam[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 293-298. DOI: 10.11779/CJGE2016S2048
    [7]SHAO Shuai, YANG Chun-ming, SHAO Sheng-jun. Construction method for anchoring face rockfill dam and its stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 61-66. DOI: 10.11779/CJGE2016S2010
    [8]LI Neng-hui, WANG Jun-li, MI Zhan-kuan, LI Deng-hua. Connotation of deformation safety of high concrete face rockfill dams and its application[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 193-201.
    [9]XU Bin, ZOU De-gao, KONG Xian-jing, DONG Guang-hui. Seismic stability of slopes of high rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 139-144.
    [10]SU He-yuan. 抽、灌水作用下上海土层变形特征的探讨[J]. Chinese Journal of Geotechnical Engineering, 1979, 1(1): 24-35.
  • Cited by

    Periodical cited type(9)

    1. 刘明芳,陈明辉,吴振元,龙桂华. 基于流固耦合的双线盾构隧道施工诱发地表沉降分析. 湖南文理学院学报(自然科学版). 2024(01): 67-75 .
    2. 张耀星,梁连,黄明. 盾构隧道与箱涵交叠下穿铁路开挖面稳定性上限分析. 公路工程. 2024(06): 64-71 .
    3. 李兴龙,蔺文帅. 复杂地质条件下矩形顶管下穿管线影响分析. 高速铁路技术. 2023(02): 94-100 .
    4. 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验. 隧道与地下工程灾害防治. 2022(03): 67-76 .
    5. 童建军,刘大刚,张霄,王志龙,赵思光,李佳旺. 大断面隧道机械化施工支护结构设计方法——以郑万高铁湖北段隧道为例. 隧道建设(中英文). 2021(01): 116-125 .
    6. 薛卫新. 剪刀叉匝道在城市地下快速路中的应用. 交通与运输. 2021(03): 32-36 .
    7. 米博,项彦勇. 含黏粒砂土地层浅埋盾构隧道开挖渗流稳定性试验. 哈尔滨工业大学学报. 2021(11): 59-65 .
    8. 孙廉威,方宇翔,沈雯. 下穿既有管线盾构开挖面失稳机制分析. 地下空间与工程学报. 2020(S1): 278-284 .
    9. 田树坤. 滇中红层地质大断面浅埋隧道的工法适应性研究. 公路交通科技(应用技术版). 2019(09): 229-233 .

    Other cited types(24)

Catalog

    CHI Huan-peng

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (563) PDF downloads (498) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return