• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Xiaofeng, CHEN Shaolin, SUN Jie. Zonal coupling analysis method for seismic response of offshore monopole wind turbine[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 96-105. DOI: 10.11779/CJGE20231025
Citation: XU Xiaofeng, CHEN Shaolin, SUN Jie. Zonal coupling analysis method for seismic response of offshore monopole wind turbine[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 96-105. DOI: 10.11779/CJGE20231025

Zonal coupling analysis method for seismic response of offshore monopole wind turbine

More Information
  • Received Date: October 17, 2023
  • Available Online: April 18, 2024
  • Offshore wind turbines are one of the important strategic choices for low-carbon sustainable energy, and their seismic safety issues need to be solved urgently. The three-dimensional seismic response problem of an offshore monopile wind turbine is regarded as a wave scattering problem, and the fluctuation input of the sea site is realized by combining with the artificial boundary conditions. A set of efficient zoning analysis methods for seawater—saturated seabed—wind turbine coupling are developed based on the unified calculation framework of generalized saturated porous media, and the three-dimensional seismic response analysis of the offshore monopile wind turbine is realized by comprehensively considering the soil-structure and fluid-structure interaction effects. The effects of seawater depth, wave velocity of seabed and incidence angle of seismic waves on the seismic response of the offshore monopile wind turbine are analyzed. The results show that the variation of seawater depth and shear wave velocity of seabed change the free field, and the self-vibration characteristics of the site—wind turbine system in the sea area, thereby affecting the seismic response of the wind turbine structure. When the seawater increases to a certain depth, the seismic response of the wind turbine increases sharply when the self-resonance frequency of the system is close to the input frequency of the seismic waves. The shear wave velocity of seabed has a greater influence on the bending moment at the bottom of the tower than on the displacement. When the incidence angle increases, the horizontal displacement and acceleration of the top of the tower and the bending moment at the bottom of the tower decrease to varying degrees, and the vertical displacement and acceleration at the top of the tower increase to different degrees. The nonlinearities of the seabed and wind turbine are not considered, and their influence laws needs to be further studied.
  • [1]
    王剑, 李响, 韩雪, 等. 中国近海风能资源时空分布特征分析[J]. 海洋预报, 2022, 39(6): 55-61.

    WANG Jian, LI Xiang, HAN Xue, et al. Analysis of spatiotemporal distribution characteristics of offshore wind energy resources in China[J]. Marine Forecasts, 2022, 39(6): 55-61. (in Chinese)
    [2]
    李小军, 李娜, 陈苏. 中国海域地震区划及关键问题研究[J]. 震灾防御技术, 2021, 16(1): 1-10.

    LI Xiaojun, LI Na, CHEN Su. Study on seismic zoning in china sea area and its key issues[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 1-10. (in Chinese)
    [3]
    THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21(2): 89-93. doi: 10.1063/1.1699629
    [4]
    王彦臻, 范宏飞, 赵凯, 等. 深厚复杂海峡场地二维非线性地震反应特性[J]. 岩土工程学报, 2024, 46(2): 345-356. doi: 10.11779/CJGE20221307

    WANG Yanzheng, FAN Hongfei, ZHAO Kai, et al. 2D nonlinear seismic response characteristics of a strait site with deep inhomogeneous soil deposits[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 345-356. (in Chinese) doi: 10.11779/CJGE20221307
    [5]
    SONG Z, WANG F, LI Y, et al. Nonlinear seismic responses of the powerhouse of a hydropower station under near-fault plane P-wave oblique incidence[J]. Engineering Structures, 199, 109613.
    [6]
    杜修力, 李洋, 赵密, 等. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学, 2017, 34(5): 52-59.

    DU Xiuli, LI Yang, ZHAO Mi, et al. Seismic response analysis method for soil-structure interaction system of underlying rigid rock base soil condition[J]. Engineering Mechanics, 2017, 34(5): 52-59. (in Chinese)
    [7]
    廖振鹏, 黄孔亮, 杨柏坡, 等. 暂态波透射边界[J]. 中国科学A辑, 1984, 14(6): 556-564.

    LIAO Zhenpeng, HUANG Konglang, YANG Baipo. et al. Transient wave transmission boundary[J]. Chinese Science (Series A), 1984, 14(6): 556-564. (in Chinese)
    [8]
    LYSMER J, KUHLEMEYERR L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, 1969, 95(4): 859-877. doi: 10.1061/JMCEA3.0001144
    [9]
    王展, 景立平, 陆新宇, 等. 黏弹性人工边界单元及地震动输入方法比较研究[J]. 世界地震工程, 2023, 39(2): 167-177.

    WANG Zhan, JING Liping, LU Xinyu, et al. Comparative study of viscous-spring boundary element and methods of seismic motion input[J]. World Earthquake Engineering, 2023, 39(2): 167-177. (in Chinese)
    [10]
    冯玉涛, 戎进章, 曹芳, 等. 动水及桩-土-结构相互作用对跨江大桥稳定性的地震影响分析[J]. 岩石力学与工程学报, 2006(增刊1): 2713-2718.

    FENG Yutao, RONG Jinzhang, CAO Fang, et al. Seismic response analysis of hydrodynamic and pile-soil-structure interaction for river-spanning bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(S1): 2713-2718. (in Chinese)
    [11]
    魏凯, 袁万城. 深水高桩承台基础地震动水效应数值解析混合算法[J]. 同济大学学报: 自然科学版, 2013(3): 336-341.

    WEI Kai, YUAN Wancheng. A numerical-analytical mixed method of hydrodynamic effect for deep-water elevated pile cap foundation under earthquake[J]. Journal of Tongji University: Natural Science, 2013(3): 336-341. (in Chinese)
    [12]
    ZUO H R, BI K M, HAO H. Dynamic analyses of operating offshore wind turbines including soil-structure interaction[J]. Engineering Structures, 2018, 157: 42-62. doi: 10.1016/j.engstruct.2017.12.001
    [13]
    HACIEFENDIOGLU K. Stochastic seismic response analysis of offshore wind turbine including fluid structure-soil interaction[J]. The Structural Design of Tall and Special Buildings, 2012, 21(12): 867-878. doi: 10.1002/tal.646
    [14]
    LEE S G, KIM D H, YOON G L. Seismic fragility for 5 MW offshore wind turbine using pushover analysis[J]. Journal of Ocean Engineering and Technology, 2013, 27(4): 98-106. doi: 10.5574/KSOE.2013.27.4.098
    [15]
    KIM D H, LEE S G, LEE I K. Seismic fragility analysis of 5 MW offshore wind turbine[J]. Renewable Energy, 2014, 65: 250-256. doi: 10.1016/j.renene.2013.09.023
    [16]
    FRANCESCA T, MARCO S, LISANNE M. A practical soil-structure interaction model for a wind turbine subjected to seismic loads and emergency shutdown[J]. Procedia Engineering, 2017(199): 2433-2438.
    [17]
    YANG Y, YE K, LI C, et al. Dynamic behavior of wind turbines influenced by aerodynamic damping and earthquake intensity[J]. Wind Energy, 2018, 21(5): 303-319. doi: 10.1002/we.2163
    [18]
    WANG P, ZHAO M, DU X, et al. Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 47-57. doi: 10.1016/j.soildyn.2018.04.028
    [19]
    陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架[J]. 力学学报, 2019, 51(2): 594-606.

    CHEN Shaolin, KE Xiaofei, ZHANG Hongxiang. A unified computational framework for fluid-solid coupling in marine earthquake engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606. (in Chinese)
    [20]
    陈少林, 程书林, 柯小飞. 海洋地震工程流固耦合问题的统一计算框架-不规则界面情形[J]. 力学学报, 2019, 51(5): 1517-1529.

    CHEN Shaolin, CHENG Shulin, KE Xiaofei. A unified computational framework for fluid-solid coupling in marine earthquake engineering: irregular interface case[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1517-1529. (in Chinese)
    [21]
    ZHAO M, GAO Z, WANG P, et al. Response spectrum method for seismic analysis of monopile offshore wind turbine[J]. Soil Dynamics and Earthquake Engineering, 2020, 136.
    [22]
    海上固定平台规划、设计和推荐作法—荷载抗力系数设计法(增补1)[S]: SY/T10009—2002.2002.

    Planning, Design and Recommended Practices for Offshore Fixed Platforms—Load Resistance Coefficient Design Method (Addendum 1): SY/T10009-2002[S]. 2002. (in Chinese)

Catalog

    Article views (277) PDF downloads (75) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return