• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
PANG Yuanen, SHI Guodong, DUAN Yu, YAO Min, JI Haoze, LUO Ming, LI Maobiao, LI Xu. Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516
Citation: PANG Yuanen, SHI Guodong, DUAN Yu, YAO Min, JI Haoze, LUO Ming, LI Maobiao, LI Xu. Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516

Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)

More Information
  • Received Date: December 06, 2022
  • Available Online: April 18, 2024
  • The coarse-grained soil is widely used in embankments, earth-rock dams and other fill projects. However, the traditional sieving method is time-consuming and inefficient, failing to meet the rapid quality testing requirements for gradation. To address these issues, an "image-gradation" relational database is established for yellow river silt and quartz sand coarse-grained soil, comprising 22380 photos. In response to the mismatch between two-dimensional image and three-dimensional gradation, a searcher-analyzer network (SaNet) is developed to handle any number of image inputs. The model accuracy steadily improves with an increase in the number of images, with average errors of 1.63% and 1.21% for the recognition of yellow river silt and quartz sand gradations, and the coefficient of determination of 0.995 and 0.992, respectively. The results demonstrate that the proposed deep learning model on the SaNet architecture exhibits high accuracy in gradation recognition, meeting the real-time non-destructive gradation detection requirements in fill projects.
  • [1]
    何忠明, 杨 煜, 段旭龙. 粗粒土路堤填料路用性能及其循环动应力试验[J]. 长安大学学报(自然科学版), 2019, 39(2): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902005.htm

    HE Zhongming, YANG Yu, DUAN Xulong. Experimental on road performance and cyclic dynamic stress of coarse-grained soil subgrade[J]. Journal of Chang’an University (Natural Science Edition), 2019, 39(2): 27-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902005.htm
    [2]
    王天亮, 张 飞, 宋宏芳, 等. 高速铁路路基粗粒土填料动静力力学特性试验研究[J]. 铁道学报, 2022, 44(4): 127-135. doi: 10.3969/j.issn.1001-8360.2022.04.016

    WANG Tianliang, ZHANG Fei, SONG Hongfang, et al. Experimental study on dynamic and static mechanical properties of coarse-grained soil filled in high-speed railway subgrade[J]. Journal of the China Railway Society, 2022, 44(4): 127-135. (in Chinese) doi: 10.3969/j.issn.1001-8360.2022.04.016
    [3]
    ZHANG C Y. Research on the frost-heave performances of filling material consisted of coarse grained soil for high-speed railway subgrade[J]. Journal of Railway Engineering Society, 2018, 35(2): 24-28. doi: 10.3969/j.issn.1006-2106.2018.02.006
    [4]
    NIE R S, SUN B L, CHENG L H, et al. Resilient characteristics test of coarse-grained soil filler for heavy haul railway subgrade[J]. Journal of the China Railway Society, 2022, 44(1): 96-104. doi: 10.3969/j.issn.1001-8360.2022.01.013
    [5]
    陈生水. 高土石坝变形破坏过程预测理论和防控技术创新[J]. 岩土工程学报, 2022, 44(7): 1211-1219. doi: 10.11779/CJGE202207003

    CHEN Shengshui. Innovations in prediction theories and prevention technologies for deformation-induced failure process of high earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1211-1219. (in Chinese) doi: 10.11779/CJGE202207003
    [6]
    李 希, 张 升, 盛岱超, 等. 基于抽样可靠性的颗分试验取样数量研究[J]. 岩土工程学报, 2016, 38(11): 2122-2127. doi: 10.11779/CJGE201611024

    LI Xi, ZHANG Sheng, SHENG Daichao, et al. Reasonable sample capacity for grain-size analysis tests based on sampling reliability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2122-2127. (in Chinese) doi: 10.11779/CJGE201611024
    [7]
    吕 超, 唐朝生, 李胜杰, 等. 基于数字图像处理技术的砂土颗粒级配分析研究[J]. 高校地质学报, 2019, 25(3): 431-436. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903011.htm

    LÜ Chao, TANG Chaosheng, LI Shengjie, et al. Gradation analysis of sand particles based on digital image processing technology[J]. Geological Journal of China Universities, 2019, 25(3): 431-436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903011.htm
    [8]
    于 沭, 温彦锋, 王玉杰, 等. 基于图像识别技术的土石料级配检测系统[J]. 中国水利水电科学研究院学报, 2019, 17(6): 439-445. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201906006.htm

    YU Shu, WEN Yanfeng, WANG Yujie, et al. Gradation testing system of rockfill material based on image recognition technology[J]. Journal of China Institute of Water Resources and Hydropower Research, 2019, 17(6): 439-445. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201906006.htm
    [9]
    程永春, 马健生, 颜廷野, 等. 基于数字图像处理技术的沥青混合料级配检测方法[J]. 科学技术与工程, 2017, 17(32): 332-338. doi: 10.3969/j.issn.1671-1815.2017.32.055

    CHENG Yongchun, MA Jiansheng, YAN Tingye, et al. Asphalt mixture gradation detection method based on digital image processing technology[J]. Science Technology and Engineering, 2017, 17(32): 332-338. (in Chinese) doi: 10.3969/j.issn.1671-1815.2017.32.055
    [10]
    雷雨萌, 陈祖煜, 于 沭, 等. 基于深度阈值卷积模型的土石料级配智能检测方法研究[J]. 水利学报, 2021, 52(3): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103013.htm

    LEI Yumeng, CHEN Zuyu, YU Shu, et al. Intelligent detection of gradation for earth-rockfill materials base on deep otsu convolutional neural network[J]. Journal of Hydraulic Engineering, 2021, 52(3): 369-380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103013.htm
    [11]
    FAN H Y, TIAN Z H, XU X B, et al. Rockfill material segmentation and gradation calculation based on deep learning[J]. Case Studies in Construction Materials, 2022, 17: e01216. doi: 10.1016/j.cscm.2022.e01216
    [12]
    刘禹杉, 孙淼军, 吴帅峰, 等. 土石料粒径与级配的图像智能识别研究[J]. 岩土工程学报, 2023, 45(增刊1): 59-62. doi: 10.11779/CJGE2023S10051

    LIU Yushan, SUN Miaojun, WU Shuaifeng, et al. Intelligent image recognition of particle size and gradation of earth-rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 59-62. (in Chinese) doi: 10.11779/CJGE2023S10051
    [13]
    ZHOU X, GONG Q, LIU Y, et al. Automatic segmentation of TBM muck images via a deep-learning approach to estimate the size and shape of rock chips[J]. Automation in Construction, 2021, 126: 103685. doi: 10.1016/j.autcon.2021.103685
    [14]
    SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
    [15]
    LIU Z, LI L, FANG X, et al. Hard-rock tunnel lithology prediction with TBM construction big data using a global- attention-mechanism-based LSTM network[J]. Automation in Construction, 2021, 125: 103647. doi: 10.1016/j.autcon.2021.103647
    [16]
    YANG D, GU C, ZHU Y, et al. A concrete dam deformation prediction method based on LSTM with attention mechanism[J]. Ieee Access, 2020, 8: 185177-185186. doi: 10.1109/ACCESS.2020.3029562
    [17]
    EBRAHIMABADI A, AZIMIPOUR M, BAHREINI A. Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM)[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(5): 573-583. doi: 10.1016/j.jrmge.2015.06.008
    [18]
    KOOPIALIPOOR M, ASTERIS P G, MOHAMMED A S, et al. Introducing stacking machine learning approaches for the prediction of rock deformation[J]. Transportation Geotechnics, 2022, 34: 100756. doi: 10.1016/j.trgeo.2022.100756
    [19]
    HE K, ZHANG X, REN S, et al. 2016. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, 2016.
  • Cited by

    Periodical cited type(4)

    1. 罗亚琼,张超,李洁,卢霖,任中俊. 土石混合体大型三轴剪切变形特性及模拟方法. 水利水电技术(中英文). 2023(05): 168-176 .
    2. 杨光伟,赵军霖,黄建,齐吉琳. 含石量对砂卵石土的颗粒破碎及强度与变形的影响研究. 中国水利水电科学研究院学报(中英文). 2022(03): 277-286 .
    3. 沈霞,冯杰. 藏东南地区砂卵石土三轴试验浅析. 科技与创新. 2019(13): 53-54+58 .
    4. 陈鸽,朱俊高,袁荣宏,王龙. 风干与饱和堆石料强度与变形特性试验研究. 西安建筑科技大学学报(自然科学版). 2019(06): 853-858+872 .

    Other cited types(1)

Catalog

    Article views (300) PDF downloads (78) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return