Citation: | PANG Yuanen, SHI Guodong, DUAN Yu, YAO Min, JI Haoze, LUO Ming, LI Maobiao, LI Xu. Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516 |
[1] |
何忠明, 杨 煜, 段旭龙. 粗粒土路堤填料路用性能及其循环动应力试验[J]. 长安大学学报(自然科学版), 2019, 39(2): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902005.htm
HE Zhongming, YANG Yu, DUAN Xulong. Experimental on road performance and cyclic dynamic stress of coarse-grained soil subgrade[J]. Journal of Chang’an University (Natural Science Edition), 2019, 39(2): 27-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902005.htm
|
[2] |
王天亮, 张 飞, 宋宏芳, 等. 高速铁路路基粗粒土填料动静力力学特性试验研究[J]. 铁道学报, 2022, 44(4): 127-135. doi: 10.3969/j.issn.1001-8360.2022.04.016
WANG Tianliang, ZHANG Fei, SONG Hongfang, et al. Experimental study on dynamic and static mechanical properties of coarse-grained soil filled in high-speed railway subgrade[J]. Journal of the China Railway Society, 2022, 44(4): 127-135. (in Chinese) doi: 10.3969/j.issn.1001-8360.2022.04.016
|
[3] |
ZHANG C Y. Research on the frost-heave performances of filling material consisted of coarse grained soil for high-speed railway subgrade[J]. Journal of Railway Engineering Society, 2018, 35(2): 24-28. doi: 10.3969/j.issn.1006-2106.2018.02.006
|
[4] |
NIE R S, SUN B L, CHENG L H, et al. Resilient characteristics test of coarse-grained soil filler for heavy haul railway subgrade[J]. Journal of the China Railway Society, 2022, 44(1): 96-104. doi: 10.3969/j.issn.1001-8360.2022.01.013
|
[5] |
陈生水. 高土石坝变形破坏过程预测理论和防控技术创新[J]. 岩土工程学报, 2022, 44(7): 1211-1219. doi: 10.11779/CJGE202207003
CHEN Shengshui. Innovations in prediction theories and prevention technologies for deformation-induced failure process of high earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1211-1219. (in Chinese) doi: 10.11779/CJGE202207003
|
[6] |
李 希, 张 升, 盛岱超, 等. 基于抽样可靠性的颗分试验取样数量研究[J]. 岩土工程学报, 2016, 38(11): 2122-2127. doi: 10.11779/CJGE201611024
LI Xi, ZHANG Sheng, SHENG Daichao, et al. Reasonable sample capacity for grain-size analysis tests based on sampling reliability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2122-2127. (in Chinese) doi: 10.11779/CJGE201611024
|
[7] |
吕 超, 唐朝生, 李胜杰, 等. 基于数字图像处理技术的砂土颗粒级配分析研究[J]. 高校地质学报, 2019, 25(3): 431-436. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903011.htm
LÜ Chao, TANG Chaosheng, LI Shengjie, et al. Gradation analysis of sand particles based on digital image processing technology[J]. Geological Journal of China Universities, 2019, 25(3): 431-436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903011.htm
|
[8] |
于 沭, 温彦锋, 王玉杰, 等. 基于图像识别技术的土石料级配检测系统[J]. 中国水利水电科学研究院学报, 2019, 17(6): 439-445. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201906006.htm
YU Shu, WEN Yanfeng, WANG Yujie, et al. Gradation testing system of rockfill material based on image recognition technology[J]. Journal of China Institute of Water Resources and Hydropower Research, 2019, 17(6): 439-445. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201906006.htm
|
[9] |
程永春, 马健生, 颜廷野, 等. 基于数字图像处理技术的沥青混合料级配检测方法[J]. 科学技术与工程, 2017, 17(32): 332-338. doi: 10.3969/j.issn.1671-1815.2017.32.055
CHENG Yongchun, MA Jiansheng, YAN Tingye, et al. Asphalt mixture gradation detection method based on digital image processing technology[J]. Science Technology and Engineering, 2017, 17(32): 332-338. (in Chinese) doi: 10.3969/j.issn.1671-1815.2017.32.055
|
[10] |
雷雨萌, 陈祖煜, 于 沭, 等. 基于深度阈值卷积模型的土石料级配智能检测方法研究[J]. 水利学报, 2021, 52(3): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103013.htm
LEI Yumeng, CHEN Zuyu, YU Shu, et al. Intelligent detection of gradation for earth-rockfill materials base on deep otsu convolutional neural network[J]. Journal of Hydraulic Engineering, 2021, 52(3): 369-380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103013.htm
|
[11] |
FAN H Y, TIAN Z H, XU X B, et al. Rockfill material segmentation and gradation calculation based on deep learning[J]. Case Studies in Construction Materials, 2022, 17: e01216. doi: 10.1016/j.cscm.2022.e01216
|
[12] |
刘禹杉, 孙淼军, 吴帅峰, 等. 土石料粒径与级配的图像智能识别研究[J]. 岩土工程学报, 2023, 45(增刊1): 59-62. doi: 10.11779/CJGE2023S10051
LIU Yushan, SUN Miaojun, WU Shuaifeng, et al. Intelligent image recognition of particle size and gradation of earth-rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 59-62. (in Chinese) doi: 10.11779/CJGE2023S10051
|
[13] |
ZHOU X, GONG Q, LIU Y, et al. Automatic segmentation of TBM muck images via a deep-learning approach to estimate the size and shape of rock chips[J]. Automation in Construction, 2021, 126: 103685. doi: 10.1016/j.autcon.2021.103685
|
[14] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
|
[15] |
LIU Z, LI L, FANG X, et al. Hard-rock tunnel lithology prediction with TBM construction big data using a global- attention-mechanism-based LSTM network[J]. Automation in Construction, 2021, 125: 103647. doi: 10.1016/j.autcon.2021.103647
|
[16] |
YANG D, GU C, ZHU Y, et al. A concrete dam deformation prediction method based on LSTM with attention mechanism[J]. Ieee Access, 2020, 8: 185177-185186. doi: 10.1109/ACCESS.2020.3029562
|
[17] |
EBRAHIMABADI A, AZIMIPOUR M, BAHREINI A. Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM)[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(5): 573-583. doi: 10.1016/j.jrmge.2015.06.008
|
[18] |
KOOPIALIPOOR M, ASTERIS P G, MOHAMMED A S, et al. Introducing stacking machine learning approaches for the prediction of rock deformation[J]. Transportation Geotechnics, 2022, 34: 100756. doi: 10.1016/j.trgeo.2022.100756
|
[19] |
HE K, ZHANG X, REN S, et al. 2016. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, 2016.
|