• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Bin, CHEN Kehao, WANG Xingliang, PANG Rui. Stochastic seismic response analysis and reliability evaluation of pipelines in liquefied soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 81-89. DOI: 10.11779/CJGE20221096
Citation: XU Bin, CHEN Kehao, WANG Xingliang, PANG Rui. Stochastic seismic response analysis and reliability evaluation of pipelines in liquefied soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 81-89. DOI: 10.11779/CJGE20221096

Stochastic seismic response analysis and reliability evaluation of pipelines in liquefied soil

More Information
  • Received Date: September 04, 2022
  • Available Online: January 08, 2024
  • The liquefaction of saturated sand under the action of earthquakes can cause the buried pipeline to float up and the system failure. To investigate the seismic response and reliability level of buried pipelines in liquefaction sites, a probabilistic analysis method based on the probability density evolution method and equivalent extreme value distribution is proposed to fully consider the randomness and non-stationarity of ground shaking. According to the excess pore water pressure, acceleration and displacement of structures, the random dynamic analysis and reliability assessment of the buried pipeline are carried out. The results show that the randomness of ground motion has a significant effect on the dynamic response of buried pipelines, and the traditional deterministic analysis methods may underestimate the seismic response of pipelines. The proposed method can be use to comprehensively study the floating mechanism and reliability level of buried pipelines. Under the action of earthquakes, the pore water pressure increases, which leads to a decrease in the effective soil stress, and then liquefaction of the soil occurs, causing the pipe to float up. The compression of soil at both sides towards the bottom of the pipe and the seepage pressure towards the bottom of the pipe further aggravate the uplift of the pipe. Finally, the disaster mitigation effect and mechanism of U-shaped gravel drainage on buried pipelines are studied based on disaster mechanism. The proposed stochastic probability analysis method can be employed to accurately evaluate the buoyancy mechanism and reliability of pipelines.
  • [1]
    CHIAN S C, TOKIMATSU K, MADABHUSHI S P G. Soil liquefaction-induced uplift of underground structures: physical and numerical modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(10): 04014057.
    [2]
    WANG L R L, YEH Y H. A refined seismic analysis and design of buried pipeline for fault movement[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(1): 75-96.
    [3]
    卢红前, 汉会, 朱永强, 等. 液化场地处循环水系统埋地管道的地基处理[J]. 武汉大学学报(工学版), 2011, 44(增刊1): 205-209.

    LU Hongqian, HAN Hui, ZHU Yongqiang, et al. Ground treatment of buried conduit for circulating water system in liquefied soil[J]. Engineering Journal of Wuhan University, 2011, 44(S1): 205-209. (in Chinese)
    [4]
    SAEEDZADEH R, HATAF N. Uplift response of buried pipelines in saturated sand deposit under earthquake loading[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(10): 1378-1384. doi: 10.1016/j.soildyn.2011.05.013
    [5]
    邹德高, 孔宪京. 液化土中管线抗上浮排水措施数值分析[J]. 大连理工大学学报, 2010, 50(3): 379-385.

    ZOU Degao, KONG Xianjing. Numerical analysis of mitigation methods against pipeline up-lifting in liquefiable soil[J]. Journal of Dalian University of Technology, 2010, 50(3): 379-385. (in Chinese)
    [6]
    MADABHUSHI S S C, MADABHUSHI S P G. Finite element analysis of floatation of rectangular tunnels following earthquake induced liquefaction[J]. Indian Geotechnical Journal, 2015, 45(3): 233-242. doi: 10.1007/s40098-014-0133-3
    [7]
    屈铁军, 王前信. 地下管线在空间随机分布的地震作用下的反应[J]. 工程力学, 2003, 20(3): 120-124.

    QU Tiejun, WANG Qianxin. Seismic response of underground pipelines to ground motion with spatial randomness[J]. Engineering Mechanics, 2003, 20(3): 120-124. (in Chinese)
    [8]
    PANG R, ZHOU Y, CHEN G H, et al. Stochastic mainshock–aftershock simulation and its applications in dynamic reliability of structural systems via DPIM[J]. Journal of Engineering Mechanics, 2023, 149(1): 04022096. doi: 10.1061/(ASCE)EM.1943-7889.0002176
    [9]
    刘汉龙. 随机地震作用下地基及土石坝永久变形分析[J]. 岩土工程学报, 1996, 18(3): 19-27. http://www.cgejournal.com/cn/article/id/9020

    LIU Hanlong. Permanent deformation of foundation and embankement dam due to stochastic seismic excitation[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 19-27. (in Chinese) http://www.cgejournal.com/cn/article/id/9020
    [10]
    ZHOU Y, JING M Y, PANG R, et al. A novel method for the dynamic reliability analysis of slopes considering dependent random parameters via the direct probability integral method[J]. Structures, 2022, 43: 1732-1749. doi: 10.1016/j.istruc.2022.07.074
    [11]
    LI J, CHEN J B, FAN W L. The equivalent extreme-value event and evaluation of the structural system reliability[J]. Structural Safety, 2007, 29(2): 112-131. doi: 10.1016/j.strusafe.2006.03.002
    [12]
    PANG R, XU B, ZHOU Y, et al. Seismic time-history response and system reliability analysis of slopes considering uncertainty of multi-parameters and earthquake excitations[J]. Computers and Geotechnics, 2021, 136: 104245. doi: 10.1016/j.compgeo.2021.104245
    [13]
    孔宪京, 庞锐, 徐斌, 等. 考虑堆石料软化的坝坡随机地震动力稳定分析[J]. 岩土工程学报, 2019, 41(3): 414-421. doi: 10.11779/CJGE201903002

    KONG Xianjing, PANG Rui, XU Bin, et al. Stochastic seismic stability analysis of dam slopes considering softening of rockfills[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 414-421. (in Chinese) doi: 10.11779/CJGE201903002
    [14]
    李杰, 陈建兵. 随机结构动力反应分析的概率密度演化方法[J]. 力学学报, 2003, 35(4): 437-442.

    LI Jie, CHEN Jianbing. Probability density evolution method for analysis of stochastic structural dynamic response[J]. Acta Mechanica Sinica, 2003, 35(4): 437-442. (in Chinese)
    [15]
    梁建文. 非平稳地震动过程模拟方法(Ⅰ)[J]. 地震学报, 2005, 27(2): 213-224.

    LIANG Jianwen. Simulation of non stationary ground motion processes (Ⅰ)[J]. Acta Seismologica Sinica, 2005, 27(2): 213-224. (in Chinese)
    [16]
    DEODATIS G. Non-stationary stochastic vector processes: seismic ground motion applications[J]. Probabilistic Engineering Mechanics, 1996, 11(3): 149-167. doi: 10.1016/0266-8920(96)00007-0
    [17]
    PASTOR M, ZIENKIEWICZ O C, CHAN A H C. Generalized plasticity and the modelling of soil behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190. doi: 10.1002/nag.1610140302
    [18]
    GHOSH B, MADABHUSHI S P G. A numerical investigation into effects of single and multiple frequency earthquake motions[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(8): 691-704. doi: 10.1016/j.soildyn.2003.07.004
    [19]
    DEWOOLKAR M M, KO H Y, PAK R Y S. Seismic behavior of cantilever retaining walls with liquefiable backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 424-435. doi: 10.1061/(ASCE)1090-0241(2001)127:5(424)
    [20]
    ZOU D G, XU B, KONG X J, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49: 111-122. doi: 10.1016/j.compgeo.2012.10.010
    [21]
    李培振, 任红梅, 吕西林, 等. 液化地基自由场振动台模型试验研究[J]. 地震工程与工程振动, 2008, 28(2): 171-178.

    LI Peizhen, REN Hongmei, LÜ Xilin, et al. Shaking table test on free field considering soil liquefaction[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(2): 171-178. (in Chinese)
  • Cited by

    Periodical cited type(19)

    1. 许博闻,兰恒星,刘世杰. 界面形态对黄土-泥岩接触面剪切力学特性影响研究. 工程地质学报. 2024(02): 448-462 .
    2. 黄晓虎,魏兆亨,易武,郭飞,黄海峰,肖宇煌. 裂隙优势流入渗诱发堆积层滑坡浅层破坏机理研究. 岩土工程学报. 2024(06): 1136-1145 . 本站查看
    3. 赵宽耀,许强,陈婉琳,彭大雷,高登辉. 黄土塬边漫灌区土体水入渗过程研究. 岩土力学. 2024(09): 2754-2764 .
    4. 王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究. 中国地质灾害与防治学报. 2024(05): 21-31 .
    5. 王诏楷. 地下水人工回灌颗粒沉积研究进展. 江淮水利科技. 2023(01): 9-14 .
    6. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
    7. 吴玮江,宋丙辉,刘迪,安亚鹏. 黄土塬区包气带水分运移特征研究. 水文地质工程地质. 2023(03): 12-22 .
    8. 曾鹏,王宇豪,张天龙,张琳,南骁聪. 基于NSGA-Ⅱ遗传算法的黄土滑坡参数反分析与稳定性预测. 地球科学. 2023(05): 1675-1685 .
    9. 冯乐涛,吴玮江,刘兴荣,宿星,万朝东. 黄土高原降水入渗方式与引发滑坡研究——以甘肃黄土地区为例. 科学技术与工程. 2023(14): 5937-5945 .
    10. 许增光,李海洋,柴军瑞,曹成,陈东来. 堤坝内集中渗漏通道与周围介质水量交换研究. 水力发电学报. 2023(07): 12-23 .
    11. 赵宽耀,许强,高登辉,刘方洲,彭大雷,陈婉琳. 坡底饱和型黄土滑坡离心模拟试验. 岩土力学. 2023(11): 3213-3223 .
    12. 赵鲁庆,彭建兵,马鹏辉,冷艳秋,朱兴华. 黄土细观界面及其灾害效应研究初探. 工程地质学报. 2023(06): 1783-1798 .
    13. 许强,陈婉琳,蒲川豪,袁爽,刘佳良. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践. 工程地质学报. 2022(04): 1179-1192 .
    14. 宁瑞浩,冷艳秋,何芝远,李泽坤,马哲. 基于CT的黄土孔隙尺度优先流特性. 科学技术与工程. 2022(23): 9927-9936 .
    15. 蒋小虎,黄跃廷,胡海军,陈铄,陈锐,王崇华,汪慧,康顺祥. 基于原位双环、试坑浸水试验和数值模拟反演的Q_3黄土饱和渗透系数对比研究. 岩土力学. 2022(11): 2941-2951 .
    16. 李同录,汪颖,胡向阳,李萍,王宇. 厚层非饱和黄土中优势流和活塞流的讨论. 工程地质学报. 2022(06): 1842-1848 .
    17. 张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响. 岩石力学与工程学报. 2021(04): 777-789 .
    18. 孙恒飞,朱兴华,成玉祥,张智锋,张卜平,蔡佳乐. 黄土优势渗流研究进展与展望. 自然灾害学报. 2021(06): 1-12 .
    19. 侯孝东,涂国祥,邱潇,李明,王清,钱昭宇. 汉源九襄地区深厚砾石层渗透特性研究. 水利与建筑工程学报. 2020(04): 192-197 .

    Other cited types(22)

Catalog

    Article views PDF downloads Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return