Citation: | LIU Xin, LI Sa, YIN Fushun, YAO Ting. Morphological characteristics of carbonate soil in South China Sea based on dynamic image technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 590-598. DOI: 10.11779/CJGE20220010 |
[1] |
刘鑫, 李飒, 刘小龙, 等. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 2019, 41(9): 1773-1780. doi: 10.11779/CJGE201909024
LIU Xin, LI Sa, LIU Xiaolong, et al. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. (in Chinese) doi: 10.11779/CJGE201909024
|
[2] |
SHINOHARA K, OIDA M, GOLMAN B. Effect of particle shape on angle of internal friction by triaxial compression test[J]. Powder Technology, 2000, 107(1/2): 131-136.
|
[3] |
SANTAMARINA J C, CHO G C. Soil behaviour: the role of particle shape[C]//Advances in Geotechnical Engineering: The Skempton Conference. London, U K: Thomas Telford Publishing, 2004: 604-617.
|
[4] |
ROUSÉ P C, FANNIN R J, SHUTTLE D A. Influence of roundness on the void ratio and strength of uniform sand[J]. Géotechnique, 2008, 58(3): 227-231. doi: 10.1680/geot.2008.58.3.227
|
[5] |
CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
|
[6] |
SARKAR D, GOUDARZY M, KÖNIG D. An interpretation of the influence of particle shape on the mechanical behavior of granular material[J]. Granular Matter, 2019, 21(3): 1-24.
|
[7] |
陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392. doi: 10.3969/j.issn.1000-7598.2005.09.008
CHEN Haiyang, WANG Ren, LI Jianguo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.09.008
|
[8] |
王步雪岩, 孟庆山, 韦昌富, 等. 多投影面下珊瑚砂砾颗粒形貌量化试验研究[J]. 岩土力学, 2019, 40(10): 3871-3878. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910021.htm
WANG Buxueyan, MENG Qingshan, WEI Changfu, et al. Quantitative experimental study of the morphology of coral sand and gravel particles under multiple projection surfaces[J]. Rock and Soil Mechanics, 2019, 40(10): 3871-3878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910021.htm
|
[9] |
WANG X, WU Y, CUI J, et al. Shape characteristics of coral sand from the South China Sea[J]. Journal of Marine Science and Engineering, 2020, 8(10): 1-24. http://www.xueshufan.com/publication/3092935897
|
[10] |
LI L Z, BEEMER R D, ISKANDER M. Granulometry of two marine calcareous sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020171. doi: 10.1061/(ASCE)GT.1943-5606.0002431
|
[11] |
WEI H Z, ZHAO T, MENG Q S, et al. Quantifying the morphology of calcareous sands by dynamic image analysis[J]. International Journal of Geomechanics, 2020, 20(4): 04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640
|
[12] |
孙越, 肖杨, 周伟, 等. 钙质砂和石英砂压缩下的颗粒破碎与形状演化[J]. 岩土工程学报, 2022, 44(6): 1061-1068. doi: 10.11779/CJGE202206010
SUN Yue, XIAO Yang, ZHOU Wei, et al. Particle breakage and shape evolution of calcareous and quartz sands under compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1061-1068. (in Chinese) doi: 10.11779/CJGE202206010
|
[13] |
马成昊, 朱长歧, 刘海峰, 等. 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108001.htm
MA Chenghao, ZHU Changqi, LIU Haifeng, et al. State-of-the-art review of research on the particle shape of soil[J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108001.htm
|
[14] |
LI L Z, ISKANDER M. Comparison of 2D and 3D dynamic image analysis for characterization of natural sands[J]. Engineering Geology, 2021, 290: 106052.
|
[15] |
GUO Y L, MARKINE V, ZHANG X H, et al. Image analysis for morphology, rheology and degradation study of railway ballast: a review[J]. Transportation Geotechnics, 2019, 18: 173-211.
|
[16] |
Standard Practice for Characterization of Particles: ASTM F1877—05(2010)[S]. West Conshohocken: ASTM International, 2010.
|
[17] |
Representation of Results of Particle Size Analysis — Part 6: Descriptive and Quantitative Representation of Particle Shape and Morphology: ISO 9276—6[S]. ISO, 2008.
|
[18] |
Standard Practice for Description and Identification of Soils (Visual-Manual Procedures): ASTM D2488—17e1[S]. ASTM International, 2017.
|
[19] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[20] |
CETIN K O, ILGAC M. Probabilistic assessments of void ratio limits and their range for cohesionless soils[J]. Soil Dynamics and Earthquake Engineering, 2021, 142: 106481.
|
[21] |
LI L Z, ISKANDER M. Evaluation of roundness parameters in use for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021081.
|
[22] |
PATRA C, SIVAKUGAN N, DAS B, et al. Correlations for relative density of clean sand with Median grain size and compaction energy[J]. International Journal of Geotechnical Engineering, 2010, 4(2): 195-203.
|
[23] |
ZHENG J X, HRYCIW R D. Index void ratios of sands from their intrinsic properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 06016019.
|
[24] |
HRYCIW R D, ZHENG J X, PENN R. An update of Robert M. Koerner's models for the packing densities of sands using image-based intrinsic soil properties[C]//Geosynthetics, Forging a Path to Bona Fide Engineering Materials. Chicago, Illinois. Reston, VA: American Society of Civil Engineers, 2016: 83-94.
|
[25] |
CHANG C S, DENG Y B, MEIDANI M. A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles[J]. Engineering Geology, 2018, 237: 21-31.
|