• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xi-feng, ZHU Hong-hu, WANG Jia-chen, WU Bing, LI Jie, CAO Ding-feng, SHI Bin. Improved fiber optic sensing technology of soil moisture based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1721-1729. DOI: 10.11779/CJGE202209017
Citation: LIU Xi-feng, ZHU Hong-hu, WANG Jia-chen, WU Bing, LI Jie, CAO Ding-feng, SHI Bin. Improved fiber optic sensing technology of soil moisture based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1721-1729. DOI: 10.11779/CJGE202209017

Improved fiber optic sensing technology of soil moisture based on neural network

More Information
  • Received Date: September 12, 2021
  • Available Online: September 22, 2022
  • Accurate monitoring of temporal and spatial distribution of soil moisture is of great significance to engineering geological assessment and geo-hazard prevention. A large gradient of moisture content of soil has a relatively great influence on the measurement precision of the actively heated fiber Bragg grating (AH-FBG) method. To analyze the source of measurement errors and its distribution along the depth, three sets of laboratory soil column tests are designed and carried out. A joint analysis method based on the artificial neural network (ANN) algorithm is further proposed to improve the analysis method of AH-FBG moisture sensing technology. The results show that when the AH-FBG method is applied to the soil with a large gradient of moisture content, the longitudinal heat transfer of the sensor and soil will both occur during the heating process simultaneously, and the longitudinal heat transfer of the sensor is dominant. This effect reduces the monitoring accuracy of moisture content, and the related errors cannot be decreased by reducing heating time. The data from laboratory tests and field monitoring indicate that compared with the traditional maximum heating value method, the joint analysis method considers the heat transition and drag effect, and therefore the monitoring accuracy of moisture content is noticeably improved, which proves the superiority of the method.
  • [1]
    LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. New York: J Wiley, 2004.
    [2]
    吴世余, 余金煌. 粉性土毛管水的力学和工程特性[J]. 岩土力学, 2013, 34(1): 80–84, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301011.htm

    WU Shi-yu, YU Jin-huang. Mechanical and engineering characteristics of capillary water of silty soils[J]. Rock and Soil Mechanics, 2013, 34(1): 80–84, 91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301011.htm
    [3]
    CHEN H, LEE C F, LAW K T. Causative mechanisms of rainfall-induced fill slope failures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 593–602. doi: 10.1061/(ASCE)1090-0241(2004)130:6(593)
    [4]
    TANG C S, CUI Y J, SHI B, et al. Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166(1): 111–118. doi: 10.1016/j.geoderma.2011.07.018
    [5]
    CUOMO S, SALA M D. Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits[J]. Engineering Geology, 2013, 162: 118–127. doi: 10.1016/j.enggeo.2013.05.010
    [6]
    CHAE B G, LEE J H, PARK H J, et al. A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front induced by rainfall infiltration[J]. Natural Hazards and Earth System Sciences, 2015, 15(8): 1835–1849. doi: 10.5194/nhess-15-1835-2015
    [7]
    WEISS J D. Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier[J]. Journal of the Air & Waste Management Association, 2003, 53(9): 1130–1148. http://oldmed.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM13678370
    [8]
    SAYDE C, BUELGA J B, RODRIGUEZ-SINOBAS L, et al. Mapping variability of soil water content and flux across 1-1000 m scales using the Actively Heated Fiber Optic method[J]. Water Resources Research, 2014, 50(9): 7302–7317. doi: 10.1002/2013WR014983
    [9]
    吴冰, 朱鸿鹄, 曹鼎峰, 等. 黄土水分场光纤原位监测及非饱和渗透系数估算[J]. 防灾减灾工程学报, 2019, 39(5): 691–699. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201905001.htm

    WU Bing, ZHU Hong-hu, CAO Ding-feng, et al. In-situ monitoring of moisture field and estimation of unsaturated permeability coefficient of loess foundation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(5): 691–699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201905001.htm
    [10]
    SAYDE C, GREGORY C, GIL-RODRIGUEZ M, et al. Feasibility of soil moisture monitoring with heated fiber optics[J]. Water Resources Research, 2010, 46(6): W06201. http://repository.tudelft.nl/assets/uuid:d8bfe431-2d9a-40bf-8bf3-c275b20fbbaa/vandeGiesen_2010.pdf
    [11]
    STRIEGL A M, LOHEIDE S P I. Heated distributed temperature sensing for field scale soil moisture monitoring[J]. Groundwater, 2012, 50(3): 340–347. doi: 10.1111/j.1745-6584.2012.00928.x
    [12]
    LI M, SI B C, HU W, et al. Single-probe heat pulse method for soil water content determination: comparison of methods[J]. Vadose Zone Journal, 2016, 15(7): 1–13.
    [13]
    VIDANA GAMAGE D, BISWAS A, STRACHAN I, et al. Soil water measurement using actively heated fiber optics at field scale[J]. Sensors, 2018, 18(4): 1116. doi: 10.3390/s18041116
    [14]
    徐东升. 一种新型光纤光栅局部位移计在小应变测量中的应用[J]. 岩土工程学报, 2017, 39(7): 1330–1335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707025.htm

    XU Dong-sheng. New fiber Bragg grating sensor-based local displacement transducer for small strain measurements of soil specimens[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1330–1335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707025.htm
    [15]
    郭君仪, 孙梦雅, 施斌, 等. 不同环境温度下土体含水率主动加热光纤法监测试验研究[J]. 岩土力学, 2020, 41(12): 4137–4144. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012034.htm

    GUO Jun-yi, SUN Meng-ya, SHI Bin, et al. Experimental study of water content in soils monitored with active heated fiber optic method at different ambient temperatures[J]. Rock and Soil Mechanics, 2020, 41(12): 4137–4144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012034.htm
    [16]
    SUN M Y, SHI B, ZHANG D, et al. Study on calibration model of soil water content based on actively heated fiber-optic FBG method in the in situ test[J]. Measurement, 2020, 165: 108176. doi: 10.1016/j.measurement.2020.108176
    [17]
    CAO D F, ZHU H H, WU B, et al. Investigating temperature and moisture profiles of seasonally frozen soil under different land covers using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2021, 290: 106197. doi: 10.1016/j.enggeo.2021.106197
    [18]
    段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管FBG渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504–510. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm

    DUAN Chao-zhe, SHI Bin, CAO Ding-feng, et al. A quasi-distributed seepage velocity monitoring method using FBG embedded in internal heated alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504–510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm
    [19]
    王家琛, 朱鸿鹄, 王静, 等. 基于主动加热光纤法的毛细阻滞入渗模型试验研究[J]. 岩土工程学报, 2021, 43(1): 147–155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101022.htm

    WANG Jia-chen, ZHU Hong-hu, WANG Jing, et al. Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 147–155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101022.htm
    [20]
    曹鼎峰, 施斌, 严珺凡, 等. 基于C-DTS的土壤含水率分布式测定方法研究[J]. 岩土工程学报, 2014, 36(5): 910–915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm

    CAO Ding-feng, SHI Bin, YAN Jun-fan, et al. Distributed method for measuring moisture content of soils based on C-DTS[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 910–915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm
    [21]
    LIU I S. On Fourier's law of heat conduction[J]. Continuum Mechanics and Thermodynamics, 1990, 2(4): 301–305. doi: 10.1007/BF01129123
    [22]
    DUBI Y, DI VENTRA M. Fourier's law: insight from a simple derivation[J]. Physical Review E, 2009, 79(4): 042101. http://www.onacademic.com/detail/journal_1000034867844610_c88b.html
    [23]
    甄作林, 朱江鸿, 张虎元, 等. 砂土导热性能测试与预测研究[J]. 地下空间与工程学报, 2018, 14(6): 1577–1586. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201806021.htm

    ZHEN Zuo-lin, ZHU Jiang-hong, ZHANG Hu-yuan, et al. Study on the measurement and prediction of thermal properties for sand[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(6): 1577–1586. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201806021.htm
    [24]
    李双成, 郑度. 人工神经网络模型在地学研究中的应用进展[J]. 地球科学进展, 2003, 18(1): 68–76. doi: 10.3321/j.issn:1001-8166.2003.01.010

    LI Shuang-cheng, ZHENG Du. Applications of artificial neural networks to geosciences: review and prospect[J]. Advance in Earth Sciences, 2003, 18(1): 68–76. (in Chinese) doi: 10.3321/j.issn:1001-8166.2003.01.010
    [25]
    BASHEER I A, HAJMEER M. Artificial neural networks: fundamentals, computing, design, and application[J]. Journal of Microbiological Methods, 2000, 43(1): 3–31. doi: 10.1016/S0167-7012(00)00201-3
    [26]
    周振民, 刘荻. 基于Matlab的人工神经网络用水量预测模型[J]. 中国农村水利水电, 2007(4): 45–47, 49. doi: 10.3969/j.issn.1007-2284.2007.04.013

    ZHOU Zhen-min, LIU Di. A prediction model of water consumption based on artificial neural network based on MATLAB[J]. China Rural Water and Hydropower, 2007(4): 45–47, 49. (in Chinese) doi: 10.3969/j.issn.1007-2284.2007.04.013
    [27]
    YU S W, ZHU K J, DIAO F Q. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction[J]. Applied Mathematics and Computation, 2008, 195(1): 66–75. doi: 10.1016/j.amc.2007.04.088
    [28]
    WU W, WANG J, CHENG M S, et al. Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks, 2011, 24(1): 91–98. doi: 10.1016/j.neunet.2010.09.007
    [29]
    BORDOLOI S, GOPAL P, BODDU R, et al. Soil-biochar-water interactions: role of biochar from Eichhornia crassipes in influencing crack propagation and suction in unsaturated soils[J]. Journal of Cleaner Production, 2019, 210: 847–859. doi: 10.1016/j.jclepro.2018.11.051
    [30]
    胡优, 李敏, 任姮烨, 等. 基于加热光纤分布式温度传感器的土壤含水率测定方法[J]. 农业工程学报, 2019, 35(10): 42–49. doi: 10.11975/j.issn.1002-6819.2019.10.006

    HU You, LI Min, REN Heng-ye, et al. Measurement of soil water content using distributed temperature sensor with heated fiber optics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 42–49. (in Chinese) doi: 10.11975/j.issn.1002-6819.2019.10.006
  • Cited by

    Periodical cited type(3)

    1. 郭旭辉,朱鸿鹄,吴冰,高宇新,胡乐乐,曹鼎峰. 基于人工神经网络的黄土含水率光纤被动感测技术研究. 岩土力学. 2025(02): 653-664 .
    2. 李杰,朱鸿鹄,吴冰,刘喜凤,王家琛,曹鼎峰,施斌. 下蜀土降雨入渗光纤感测及渗透系数估算研究. 工程地质学报. 2024(02): 601-611 .
    3. 朱鸿鹄. 工程地质界面:从多元表征到演化机理. 地质科技通报. 2023(01): 1-19 .

    Other cited types(0)

Catalog

    Article views (179) PDF downloads (50) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return