Citation: | LIU Xi-feng, ZHU Hong-hu, WANG Jia-chen, LI Jie, WANG Jing, CAO Ding-feng, SHI Bin. Experimental study on actively heated fiber Bragg grating method for sensing seepage in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1443-1452. DOI: 10.11779/CJGE202208009 |
[1] |
邢鲜丽, 李同录, 李萍, 等. 黄土抗剪强度与含水率的变化规律[J]. 水文地质工程地质, 2014, 41(3): 53-59, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403012.htm
XING Xian-li, LI Tong-lu, LI Ping, et al. Variation regularities of loess shear strength with the moisture content[J]. Hydrogeology and Engineering Geology, 2014, 41(3): 53-59, 97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403012.htm
|
[2] |
CHEN H, LEE C F, LAW K T. Causative mechanisms of rainfall-induced fill slope failures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 593-602. doi: 10.1061/(ASCE)1090-0241(2004)130:6(593)
|
[3] |
LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. Hoboken: John Wiley & Sons Inc, 2004.
|
[4] |
TANG C S, CUI Y J, SHI B, et al. Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166(1): 111-118. doi: 10.1016/j.geoderma.2011.07.018
|
[5] |
SERRARENS D, MACINTYRE J L, HOPMANS J W, et al. Soil moisture calibration of TDR multilevel probes[J]. Scientia Agricola, 2000, 57(2): 349-354. doi: 10.1590/S0103-90162000000200024
|
[6] |
NADLER A, GAMLIEL A, PERETZ I. Practical aspects of salinity effect on TDR-measured water content: a field study[J]. Soil Science Society of America Journal, 1999, 63(5): 1070-1076. doi: 10.2136/sssaj1999.6351070x
|
[7] |
EVETT S R, STEINER J L. Precision of neutron scattering and capacitance type soil water content gauges from field calibration[J]. Soil Science Society of America Journal, 1995, 59(4): 961-968. doi: 10.2136/sssaj1995.03615995005900040001x
|
[8] |
FRIEDMAN S P. Soil properties influencing apparent electrical conductivity: a review[J]. Computers and Electronics in Agriculture, 2005, 46(1/2/3): 45-70. https://www.sciencedirect.com/science/article/pii/S0168169904001255
|
[9] |
ANDERSSON P M, LINDER B G, NILSSON N R. Radar system for mapping internal erosion in embankment dams[J]. International Water Power and Dam Construction, 1991, 43(7): 11-16.
|
[10] |
BRISTOW K L, KLUITENBERG G J, GODING C J, et al. A small multi-needle probe for measuring soil thermal properties, water content and electrical conductivity[J]. Computers and Electronics in Agriculture, 2001, 31(3): 265-280. doi: 10.1016/S0168-1699(00)00186-1
|
[11] |
OCHSNER T E, HORTON R, REN T S. Use of the dual-probe heat-pulse technique to monitor soil water content in the vadose zone[J]. Vadose Zone Journal, 2003, 2(4): 572-579. doi: 10.2136/vzj2003.5720
|
[12] |
施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019.
SHI Bin, ZHANG Dan, ZHU Hong-hu. Distributed Fiber Optic Sensing for Geoengineering Monitoring[M]. Beijing: Science Press, 2019. (in Chinese)
|
[13] |
SAYDE C, GREGORY C, GIL-RODRIGUEZ M, et al. Feasibility of soil moisture monitoring with heated fiber optics[J]. Water Resources Research, 2010, 46(6): W06201. doi: 10.1029/2009WR007846
|
[14] |
曹鼎峰, 施斌, 严珺凡, 等. 基于C-DTS的土壤含水率分布式测定方法研究[J]. 岩土工程学报, 2014, 36(5): 910-915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm
CAO Ding-feng, SHI Bin, YAN Jun-fan, et al. Distributed method for measuring moisture content of soils based on C-DTS[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 910-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm
|
[15] |
BENÍTEZ-BUELGA J, SAYDE C, RODRÍGUEZ-SINOBAS L, et al. Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach[J]. Vadose Zone Journal, 2014, 13(11): 1-10. doi: 10.2136/vzj2014.02.0014
|
[16] |
YAN J F, SHI B, ZHU H H, et al. A quantitative monitoring technology for seepage in slopes using DTS[J]. Engineering Geology, 2015, 186: 100-104. doi: 10.1016/j.enggeo.2015.01.001
|
[17] |
LI M, SI B C, HU W, et al. Single-probe heat pulse method for soil water content determination: comparison of methods[J]. Vadose Zone Journal, 2016, 15(7): 1-13. https://pubs.geoscienceworld.org/vzj/article-abstract/15/7/vzj2016.01.0004/246457/Single-Probe-Heat-Pulse-Method-for-Soil-Water
|
[18] |
胡优, 李敏, 任姮烨, 等. 基于加热光纤分布式温度传感器的土壤含水率测定方法[J]. 农业工程学报, 2019, 35(10): 42-49. doi: 10.11975/j.issn.1002-6819.2019.10.006
HU You, LI Min, REN Heng-ye, et al. Measurement of soil water content using distributed temperature sensor with heated fiber optics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 42-49. (in Chinese) doi: 10.11975/j.issn.1002-6819.2019.10.006
|
[19] |
CAO D F, SHI B, ZHU H H, et al. A soil moisture estimation method using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2018, 242: 142-149. doi: 10.1016/j.enggeo.2018.05.024
|
[20] |
段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管FBG渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm
DUAN Chao-zhe, SHI Bin, CAO Ding-feng, et al. A quasi-distributed seepage velocity monitoring method using FBG embedded in internal heated alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504-510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm
|
[21] |
王家琛, 朱鸿鹄, 王静, 等. 基于主动加热光纤法的毛细阻滞入渗模型试验研究[J]. 岩土工程学报, 2021, 43(1): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101022.htm
WANG Jia-chen, ZHU Hong-hu, WANG Jing, et al. Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 147-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101022.htm
|
[22] |
CAO D F, ZHU H H, WU B, et al. Investigating temperature and moisture profiles of seasonally frozen soil under different land covers using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2021, 290: 106197. doi: 10.1016/j.enggeo.2021.106197
|
[23] |
陈强, 刁少波, 孙建业, 等. 热脉冲探针-时域反射技术测量含水合物沉积物的热导率及水合物饱和度[J]. 岩矿测试, 2013(1): 108-113. doi: 10.3969/j.issn.0254-5357.2013.01.019
CHEN Qiang, DIAO Shao-bo, SUN Jian-ye, et al. Measurement of thermal conductivity and saturation of gas hydrates in sediment by thermal pulse probe-time domain reflection technique[J]. Rock and Mineral Analysis, 2013(1): 108-113. (in Chinese) doi: 10.3969/j.issn.0254-5357.2013.01.019
|
[24] |
SUN M Y, SHI B, ZHANG D, et al. Study on calibration model of soil water content based on actively heated fiber-optic FBG method in the in situ test[J]. Measurement, 2020, 165: 108176. doi: 10.1016/j.measurement.2020.108176
|
[25] |
STRIEGL A M, LOHEIDE S P I. Heated distributed temperature sensing for field scale soil moisture monitoring[J]. Groundwater, 2012, 50(3): 340-347. doi: 10.1111/j.1745-6584.2012.00928.x
|
[26] |
CAMPBELL G S, CALISSENDORFF C, WILLIAMS J H. Probe for measuring soil specific heat using A heat-pulse method[J]. Soil Science Society of America Journal, 1991, 55(1): 291-293. doi: 10.2136/sssaj1991.03615995005500010052x
|
[27] |
TARARA J M, HAM J M. Measuring soil water content in the laboratory and field with dual-probe heat-capacity sensors[J]. Agronomy Journal, 1997, 89(4): 535-542. doi: 10.2134/agronj1997.00021962008900040001x
|
[28] |
BRISTOW K, WHITE R, KLUITENBERG G. Comparison of single and dual probes for measuring soil thermal properties with transient heating[J]. Soil Research, 1994, 32(3): 447-464. doi: 10.1071/SR9940447
|
[29] |
BASINGER J M, KLUITENBERG G J, HAM J M, et al. Laboratory evaluation of the dual-probe heat-pulse method for measuring soil water content[J]. Vadose Zone Journal, 2003, 2(3): 389-399. doi: 10.2136/vzj2003.3890
|
[30] |
KNIGHT J H, KLUITENBERG G J. Simplified computational approach for dual-probe heat-pulse method[J]. Soil Science Society of America Journal, 2004, 68(2): 447-449. doi: 10.2136/sssaj2004.4470
|
[31] |
吴冰, 朱鸿鹄, 曹鼎峰, 等. 基于主动加热光纤法的冻土相变温度场特征分析[J]. 工程地质学报, 2019, 27(5): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905020.htm
WU Bing, ZHU Hong-hu, CAO Ding-feng, et al. Investigation of phase change temperature field in frozen soil based on actively heated fiber optics method[J]. Journal of Engineer Geology, 2019, 27(5): 165-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905020.htm
|
[32] |
吴冰, 朱鸿鹄, 曹鼎峰, 等. 基于光纤光栅的冻土含冰量监测可行性试验研究[J]. 岩土工程学报, 2019, 41 (12): 2323-2330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912025.htm
WU Bing, ZHU Hong-hu, CAO Ding-feng, et al. Feasibility study on FBG-based monitoring method for ice content in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2323-2330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912025.htm
|
[33] |
LIU I S. On Fourier's law of heat conduction[J]. Continuum Mechanics and Thermodynamics, 1990, 2(4): 301-305. doi: 10.1007/BF01129123
|
[34] |
DUBI Y, VENTRA M D. Fourier's Law: insight from a simple derivation[J]. Physical Review E, 2009, 79(4): 1-4.
|
[1] | LI Shue, CHEN Zhiming, XU Yongfu, XU Yuran, KANG Fengyi, DU Zhongbao. Calculation of rising height of capillary water based on fractal model for grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2221-2228. DOI: 10.11779/CJGE20230426 |
[2] | ZHOU Fengxi, RAN Yue, WAN Xusheng, WANG Liye. Water-salt phase transition of saline soils during evaporation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1030-1038. DOI: 10.11779/CJGE20230117 |
[3] | A Soil-Water Characteristic Curve Considering Temperature and Void Ratio under Capillarity and Adsorption[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231253 |
[4] | MU Wen, TANG Chaosheng, CHENG Qing, TIAN Bengang, LIU Weijie, HU Huicong, SHI Bin. Effects of cracks on evaporation process of water in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2641-2648. DOI: 10.11779/CJGE20221115 |
[5] | CHENG Hua, CHEN Han-qing, CAO Guang-yong, RONG Chuan-Xin, YAO Zhi-shu, CAI Hai-bing. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003 |
[6] | JIAO Wei-guo, ZHANG Liang-tong, JI Yong-xin, HE Ming-wei, LIU Zhen-nan. Field tests on water storage capacity of loess-gravel capillary barrier covers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1149-1157. DOI: 10.11779/CJGE201906020 |
[7] | HAO Rui, SHI Bin, CAO Ding-feng, WEI Guang-qing, ZHANG Yan, MEI Shi-jia. Experimental study on capillary water transport model based on AHFO technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 376-382. DOI: 10.11779/CJGE201902017 |
[8] | DENG Lin-heng, ZHAN Liang-tong, CHEN Yun-min, JIA Guan-wei. Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 75-80. |
[9] | ZHU Zhi-duo, PENG Yu-yi, ZHANG Wen-chao, WEI Ren-jie. Experimental study on capillary water in silty subgrade of highway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 45-48. |
[10] | DONG Bin, ZHANG Xifa, LI Xin, ZHANG Dongqing. Comprehensive tests on rising height of capillary water[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1569-1574. |