• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xi-feng, ZHU Hong-hu, WANG Jia-chen, LI Jie, WANG Jing, CAO Ding-feng, SHI Bin. Experimental study on actively heated fiber Bragg grating method for sensing seepage in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1443-1452. DOI: 10.11779/CJGE202208009
Citation: LIU Xi-feng, ZHU Hong-hu, WANG Jia-chen, LI Jie, WANG Jing, CAO Ding-feng, SHI Bin. Experimental study on actively heated fiber Bragg grating method for sensing seepage in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1443-1452. DOI: 10.11779/CJGE202208009

Experimental study on actively heated fiber Bragg grating method for sensing seepage in unsaturated soils

More Information
  • Received Date: May 15, 2021
  • Available Online: September 22, 2022
  • The seepage in unsaturated soils is a key factor that induces various geohazards and geoenvironmental problems, but the mechanism has not been clearly understood due to the limitations of measuring techniques. A series of soil column tests are carried out to study the performance of actively heated fiber Bragg grating (AH-FBG) in monitoring the seepage in unsaturated soils and analyze the error sources and distribution characteristics of the single-probe and dual-probe methods. Both the AH-FBG and the frequency domain reflectometry are used to monitor the whole process of rise of capillary water and water evaporation. The monitoring accuracy of the single-probe and dual-probe methods is compared, and the applicable conditions of different methods are analyzed. The results show that the thermal conductivity method has the highest accuracy among the three data analysis methods based on the single-probe AH-FBG method. However, when the wetting front just exceeds the sensing section of the probe in the process of the rise of capillary water, the measured moisture content will be low due to the influences of longitudinal heat transfer. Compared with the single-probe method, the dual-probe method is more affected by longitudinal heat transfer and has a larger error in monitoring the seepage. The error is related to the value of moisture content of soils at the position of the measuring point and the distribution of moisture content of soils in the vertical profile of the soil column. In order to reduce the influences of longitudinal heat transfer, the improvement measures of AH-FBG method are proposed from two aspects of sensor structure and data processing.
  • [1]
    邢鲜丽, 李同录, 李萍, 等. 黄土抗剪强度与含水率的变化规律[J]. 水文地质工程地质, 2014, 41(3): 53-59, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403012.htm

    XING Xian-li, LI Tong-lu, LI Ping, et al. Variation regularities of loess shear strength with the moisture content[J]. Hydrogeology and Engineering Geology, 2014, 41(3): 53-59, 97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403012.htm
    [2]
    CHEN H, LEE C F, LAW K T. Causative mechanisms of rainfall-induced fill slope failures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 593-602. doi: 10.1061/(ASCE)1090-0241(2004)130:6(593)
    [3]
    LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. Hoboken: John Wiley & Sons Inc, 2004.
    [4]
    TANG C S, CUI Y J, SHI B, et al. Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166(1): 111-118. doi: 10.1016/j.geoderma.2011.07.018
    [5]
    SERRARENS D, MACINTYRE J L, HOPMANS J W, et al. Soil moisture calibration of TDR multilevel probes[J]. Scientia Agricola, 2000, 57(2): 349-354. doi: 10.1590/S0103-90162000000200024
    [6]
    NADLER A, GAMLIEL A, PERETZ I. Practical aspects of salinity effect on TDR-measured water content: a field study[J]. Soil Science Society of America Journal, 1999, 63(5): 1070-1076. doi: 10.2136/sssaj1999.6351070x
    [7]
    EVETT S R, STEINER J L. Precision of neutron scattering and capacitance type soil water content gauges from field calibration[J]. Soil Science Society of America Journal, 1995, 59(4): 961-968. doi: 10.2136/sssaj1995.03615995005900040001x
    [8]
    FRIEDMAN S P. Soil properties influencing apparent electrical conductivity: a review[J]. Computers and Electronics in Agriculture, 2005, 46(1/2/3): 45-70. https://www.sciencedirect.com/science/article/pii/S0168169904001255
    [9]
    ANDERSSON P M, LINDER B G, NILSSON N R. Radar system for mapping internal erosion in embankment dams[J]. International Water Power and Dam Construction, 1991, 43(7): 11-16.
    [10]
    BRISTOW K L, KLUITENBERG G J, GODING C J, et al. A small multi-needle probe for measuring soil thermal properties, water content and electrical conductivity[J]. Computers and Electronics in Agriculture, 2001, 31(3): 265-280. doi: 10.1016/S0168-1699(00)00186-1
    [11]
    OCHSNER T E, HORTON R, REN T S. Use of the dual-probe heat-pulse technique to monitor soil water content in the vadose zone[J]. Vadose Zone Journal, 2003, 2(4): 572-579. doi: 10.2136/vzj2003.5720
    [12]
    施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019.

    SHI Bin, ZHANG Dan, ZHU Hong-hu. Distributed Fiber Optic Sensing for Geoengineering Monitoring[M]. Beijing: Science Press, 2019. (in Chinese)
    [13]
    SAYDE C, GREGORY C, GIL-RODRIGUEZ M, et al. Feasibility of soil moisture monitoring with heated fiber optics[J]. Water Resources Research, 2010, 46(6): W06201. doi: 10.1029/2009WR007846
    [14]
    曹鼎峰, 施斌, 严珺凡, 等. 基于C-DTS的土壤含水率分布式测定方法研究[J]. 岩土工程学报, 2014, 36(5): 910-915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm

    CAO Ding-feng, SHI Bin, YAN Jun-fan, et al. Distributed method for measuring moisture content of soils based on C-DTS[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 910-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm
    [15]
    BENÍTEZ-BUELGA J, SAYDE C, RODRÍGUEZ-SINOBAS L, et al. Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach[J]. Vadose Zone Journal, 2014, 13(11): 1-10. doi: 10.2136/vzj2014.02.0014
    [16]
    YAN J F, SHI B, ZHU H H, et al. A quantitative monitoring technology for seepage in slopes using DTS[J]. Engineering Geology, 2015, 186: 100-104. doi: 10.1016/j.enggeo.2015.01.001
    [17]
    LI M, SI B C, HU W, et al. Single-probe heat pulse method for soil water content determination: comparison of methods[J]. Vadose Zone Journal, 2016, 15(7): 1-13. https://pubs.geoscienceworld.org/vzj/article-abstract/15/7/vzj2016.01.0004/246457/Single-Probe-Heat-Pulse-Method-for-Soil-Water
    [18]
    胡优, 李敏, 任姮烨, 等. 基于加热光纤分布式温度传感器的土壤含水率测定方法[J]. 农业工程学报, 2019, 35(10): 42-49. doi: 10.11975/j.issn.1002-6819.2019.10.006

    HU You, LI Min, REN Heng-ye, et al. Measurement of soil water content using distributed temperature sensor with heated fiber optics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 42-49. (in Chinese) doi: 10.11975/j.issn.1002-6819.2019.10.006
    [19]
    CAO D F, SHI B, ZHU H H, et al. A soil moisture estimation method using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2018, 242: 142-149. doi: 10.1016/j.enggeo.2018.05.024
    [20]
    段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管FBG渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm

    DUAN Chao-zhe, SHI Bin, CAO Ding-feng, et al. A quasi-distributed seepage velocity monitoring method using FBG embedded in internal heated alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504-510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm
    [21]
    王家琛, 朱鸿鹄, 王静, 等. 基于主动加热光纤法的毛细阻滞入渗模型试验研究[J]. 岩土工程学报, 2021, 43(1): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101022.htm

    WANG Jia-chen, ZHU Hong-hu, WANG Jing, et al. Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 147-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101022.htm
    [22]
    CAO D F, ZHU H H, WU B, et al. Investigating temperature and moisture profiles of seasonally frozen soil under different land covers using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2021, 290: 106197. doi: 10.1016/j.enggeo.2021.106197
    [23]
    陈强, 刁少波, 孙建业, 等. 热脉冲探针-时域反射技术测量含水合物沉积物的热导率及水合物饱和度[J]. 岩矿测试, 2013(1): 108-113. doi: 10.3969/j.issn.0254-5357.2013.01.019

    CHEN Qiang, DIAO Shao-bo, SUN Jian-ye, et al. Measurement of thermal conductivity and saturation of gas hydrates in sediment by thermal pulse probe-time domain reflection technique[J]. Rock and Mineral Analysis, 2013(1): 108-113. (in Chinese) doi: 10.3969/j.issn.0254-5357.2013.01.019
    [24]
    SUN M Y, SHI B, ZHANG D, et al. Study on calibration model of soil water content based on actively heated fiber-optic FBG method in the in situ test[J]. Measurement, 2020, 165: 108176. doi: 10.1016/j.measurement.2020.108176
    [25]
    STRIEGL A M, LOHEIDE S P I. Heated distributed temperature sensing for field scale soil moisture monitoring[J]. Groundwater, 2012, 50(3): 340-347. doi: 10.1111/j.1745-6584.2012.00928.x
    [26]
    CAMPBELL G S, CALISSENDORFF C, WILLIAMS J H. Probe for measuring soil specific heat using A heat-pulse method[J]. Soil Science Society of America Journal, 1991, 55(1): 291-293. doi: 10.2136/sssaj1991.03615995005500010052x
    [27]
    TARARA J M, HAM J M. Measuring soil water content in the laboratory and field with dual-probe heat-capacity sensors[J]. Agronomy Journal, 1997, 89(4): 535-542. doi: 10.2134/agronj1997.00021962008900040001x
    [28]
    BRISTOW K, WHITE R, KLUITENBERG G. Comparison of single and dual probes for measuring soil thermal properties with transient heating[J]. Soil Research, 1994, 32(3): 447-464. doi: 10.1071/SR9940447
    [29]
    BASINGER J M, KLUITENBERG G J, HAM J M, et al. Laboratory evaluation of the dual-probe heat-pulse method for measuring soil water content[J]. Vadose Zone Journal, 2003, 2(3): 389-399. doi: 10.2136/vzj2003.3890
    [30]
    KNIGHT J H, KLUITENBERG G J. Simplified computational approach for dual-probe heat-pulse method[J]. Soil Science Society of America Journal, 2004, 68(2): 447-449. doi: 10.2136/sssaj2004.4470
    [31]
    吴冰, 朱鸿鹄, 曹鼎峰, 等. 基于主动加热光纤法的冻土相变温度场特征分析[J]. 工程地质学报, 2019, 27(5): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905020.htm

    WU Bing, ZHU Hong-hu, CAO Ding-feng, et al. Investigation of phase change temperature field in frozen soil based on actively heated fiber optics method[J]. Journal of Engineer Geology, 2019, 27(5): 165-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905020.htm
    [32]
    吴冰, 朱鸿鹄, 曹鼎峰, 等. 基于光纤光栅的冻土含冰量监测可行性试验研究[J]. 岩土工程学报, 2019, 41 (12): 2323-2330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912025.htm

    WU Bing, ZHU Hong-hu, CAO Ding-feng, et al. Feasibility study on FBG-based monitoring method for ice content in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2323-2330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912025.htm
    [33]
    LIU I S. On Fourier's law of heat conduction[J]. Continuum Mechanics and Thermodynamics, 1990, 2(4): 301-305. doi: 10.1007/BF01129123
    [34]
    DUBI Y, VENTRA M D. Fourier's Law: insight from a simple derivation[J]. Physical Review E, 2009, 79(4): 1-4.
  • Related Articles

    [1]LI Shue, CHEN Zhiming, XU Yongfu, XU Yuran, KANG Fengyi, DU Zhongbao. Calculation of rising height of capillary water based on fractal model for grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2221-2228. DOI: 10.11779/CJGE20230426
    [2]ZHOU Fengxi, RAN Yue, WAN Xusheng, WANG Liye. Water-salt phase transition of saline soils during evaporation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1030-1038. DOI: 10.11779/CJGE20230117
    [3]A Soil-Water Characteristic Curve Considering Temperature and Void Ratio under Capillarity and Adsorption[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231253
    [4]MU Wen, TANG Chaosheng, CHENG Qing, TIAN Bengang, LIU Weijie, HU Huicong, SHI Bin. Effects of cracks on evaporation process of water in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2641-2648. DOI: 10.11779/CJGE20221115
    [5]CHENG Hua, CHEN Han-qing, CAO Guang-yong, RONG Chuan-Xin, YAO Zhi-shu, CAI Hai-bing. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003
    [6]JIAO Wei-guo, ZHANG Liang-tong, JI Yong-xin, HE Ming-wei, LIU Zhen-nan. Field tests on water storage capacity of loess-gravel capillary barrier covers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1149-1157. DOI: 10.11779/CJGE201906020
    [7]HAO Rui, SHI Bin, CAO Ding-feng, WEI Guang-qing, ZHANG Yan, MEI Shi-jia. Experimental study on capillary water transport model based on AHFO technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 376-382. DOI: 10.11779/CJGE201902017
    [8]DENG Lin-heng, ZHAN Liang-tong, CHEN Yun-min, JIA Guan-wei. Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 75-80.
    [9]ZHU Zhi-duo, PENG Yu-yi, ZHANG Wen-chao, WEI Ren-jie. Experimental study on capillary water in silty subgrade of highway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 45-48.
    [10]DONG Bin, ZHANG Xifa, LI Xin, ZHANG Dongqing. Comprehensive tests on rising height of capillary water[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1569-1574.

Catalog

    Article views (203) PDF downloads (176) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return