• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Yong-fu, CHENG Yan, XIAO Jie, LIN Yu-liang, QI Shun-chao. New prevention and control technology for expansive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1281-1294. DOI: 10.11779/CJGE202207008
Citation: XU Yong-fu, CHENG Yan, XIAO Jie, LIN Yu-liang, QI Shun-chao. New prevention and control technology for expansive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1281-1294. DOI: 10.11779/CJGE202207008

New prevention and control technology for expansive soil slopes

More Information
  • Received Date: January 16, 2022
  • Available Online: September 22, 2022
  • For the National Key Research and Development Program of China "Research on new prevention and control technology of expansive soil slopes (No. 2019YFC1509800)", the following achievements are obtained: (1) Based on the fractal model for montmorillonite surface and the isothermal adsorption theory, the water-mineral interaction mechanism of expansive soils is revealed, the swelling deformation theory and generalized effective stress theory are established, and the shear strength theory of fractured expansive soils is put forward. (2) The failure mechanism of expansive soil slopes is divided into two types which are controlled by shallow cracks and deep weak planes. The methods to evaluate the stability factor of expansive soil slopes are proposed for two slope failure types. (3) The prevention technology of expansive soil slopes is divided into three types as "separation" technology, "retaining" technology and "stabilization" technology (hereinafter written as SRS for short). The separation technology contains non-expansive clay-covered layer, soil bags, reinforced package and waterproof & drainage layers. The retaining technology contains pile-sheet walls and soilbag retaining walls. The stabilization technology contains anti-slide piles and anchor rods. (4) The standardized design of soilbag, reinforced packages and pile-sheet walls is realized. The application of soil bags, reinforced packages, waterproof & drainage layers and pile-sheet walls are completed for the prevention of expansive soil slopes. The validity of the applied prevention and control technology is checked by the real-time automatic monitoring results in site.
  • [1]
    徐永福, 刘松玉. 非饱和土强度理论及其工程应用[M]. 南京: 东南大学出版社, 1999.

    XU Yong-fu, LIU Song-yu. Strength Theory of Unsaturated Soil and Its Engineering Application[M]. Nanjing: Sountheast University Press, 1999. (in Chinese)
    [2]
    李生林, 施斌. 中国膨胀土工程地质研究[M]. 南京: 江苏科学技术出版社, 1992.

    LI Sheng-lin, SHI Bin. Engineering Geology of Expansive Soil in China[M]. Nanjing: Jiangsu Science and Technology Press, 1992. (in Chinese)
    [3]
    郑健龙, 杨和平. 公路膨胀土工程[M]. 北京: 人民交通出版社, 2009.

    ZHENG Jian-long, YANG He-ping. Expansive Soil Engineering in Highway[M]. Beijing: China Communications Press, 2009. (in Chinese)
    [4]
    殷宗泽, 袁俊平. 膨胀土特性与边坡稳定[M]. 北京: 科学出版社, 2018.

    YIN Zong-ze, YUAN Jun-ping. Characteristics of Expansive Soil and Slope Stability[M]. Beijing: Science Press, 2018. (in Chinese)
    [5]
    XU Y F. Bearing capacity of unsaturated expansive soils[J]. Geotechnical and Geological Engineering, 2004, 22(4): 611–625. doi: 10.1023/B:GEGE.0000047043.29898.17
    [6]
    包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1–15. doi: 10.3321/j.issn:1000-4548.2004.01.001

    BAO Cheng-gang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1–15. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.01.001
    [7]
    陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1–54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    CHEN Zheng-han, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1–54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm
    [8]
    詹良通, 吴宏伟, 包承纲, 等. 降雨入渗条件下非饱和膨胀土边坡原位监测[J]. 岩土力学, 2003, 24(2): 151–158. doi: 10.3969/j.issn.1000-7598.2003.02.034

    ZHAN Liang-tong, NG W C, BAO Cheng-gang, et al. Artificial rainfall infiltration tests on a well-instrumented unsaturated expansive soil slope[J]. Rock and Soil Mechanics, 2003, 24(2): 151–158. (in Chinese) doi: 10.3969/j.issn.1000-7598.2003.02.034
    [9]
    张坤勇, 徐娜, 陈恕, 等. 膨胀土完全软化强度指标试验研究[J]. 岩土工程学报, 2020, 42(11): 1988–1995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011005.htm

    ZHANG Kun-yong, XU Na, CHEN Shu, et al. Experimental study on fully softened shear strength of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1988–1995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011005.htm
    [10]
    徐永福. 膨胀土的水力作用机理及膨胀变形理论[J]. 岩土工程学报, 2020, 42(11): 1979–1987. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011004.htm

    XU Yong-fu. Hydraulic mechanism and swelling deformation theory of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1979–1987. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011004.htm
    [11]
    徐永福. 考虑渗透吸力影响膨润土的修正有效应力及其验证[J]. 岩土工程学报, 2019, 41(4): 631–638. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904006.htm

    XU Yong-fu. Modified effective stress induced by osmotic suction and its validation in volume change and shear strength of bentonite in saline solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 631–638. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904006.htm
    [12]
    XU Y F, XIANG G S, JIANG H, et al. Role of osmotic suction in volume change of clays in salt solution[J]. Applied Clay Science, 2014, 101: 354–361. doi: 10.1016/j.clay.2014.09.006
    [13]
    XU Y F, MATSUOKA H, SUN D A. Swelling characteristics of fractal-textured bentonite and its mixtures[J]. Applied Clay Science, 2003, 22(4): 197–209. doi: 10.1016/S0169-1317(02)00159-X
    [14]
    XU Y F. Surface fractal dimension of swelling clay minerals[J]. Fractals, 2003, 11(4): 353–362. doi: 10.1142/S0218348X03002245
    [15]
    AVNIR D, JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989, 5(6): 1431–1433. doi: 10.1021/la00090a032
    [16]
    ZHANG B Q, LI S F. Determination of the surface fractal dimension for porous media by mercury porosimetry[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1383–1386.
    [17]
    徐永福, 孙婉莹, 吴正根. 我国膨胀土的分形结构的研究[J]. 河海大学学报, 1997, 25(1): 18–23. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX701.003.htm

    XU Yong-fu, SUN Wan-yin, WU Zheng-gen. On fractal structure of expansive soils in China[J]. Journal of Hohai University, 1997, 25(1): 18–23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX701.003.htm
    [18]
    XU Y F. Fractal approach to unsaturated shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3): 264–273. doi: 10.1061/(ASCE)1090-0241(2004)130:3(264)
    [19]
    XU Y F. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution[J]. Computers and Geotechnics, 2004, 31(7): 549–557. doi: 10.1016/j.compgeo.2004.07.003
    [20]
    XU Y F, DONG P. Fractal approach to hydraulic properties in unsaturated porous media[J]. Chaos, Solitons & Fractals, 2004, 19(2): 327–337.
    [21]
    XU Y F. Peak shear strength of compacted GMZ bentonites in saline solution[J]. Engineering Geology, 2019, 251: 93–99. doi: 10.1016/j.enggeo.2019.02.009
    [22]
    郑新江, 徐永福. 盐溶液饱和高庙子膨润土的强度特性[J]. 岩土工程学报, 2021, 43(4): 783–788. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104026.htm

    ZHENG Xin-jiang, XU Yong-fu. Strength characteristics of GMZ bentonite saturated with salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 783–788. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104026.htm
    [23]
    MANDELBROT B B. The fractal geometry of nature, Freeman, San Francisco, 1982.
    [24]
    BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287–332. doi: 10.1016/0013-7952(73)90013-6
    [25]
    龚壁卫, 程展林, 胡波, 等. 膨胀土裂隙的工程特性研究[J]. 岩土力学, 2014, 35(7): 1825–1830, 1836. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407002.htm

    GONG Bi-wei, CHENG Zhan-lin, HU Bo, et al. Research on engineering properties of fissures in expansive soil[J]. Rock and Soil Mechanics, 2014, 35(7): 1825–1830, 1836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407002.htm
    [26]
    蔡正银, 陈皓, 黄英豪, 等. 考虑干湿循环作用的膨胀土渠道边坡破坏机理研究[J]. 岩土工程学报, 2019, 41(11): 1977–1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm

    CAI Zheng-yin, CHEN Hao, HUANG Ying-hao, et al. Failure mechanism of canal slopes of expansive soils considering action of wetting-drying cycles. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1977–1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm
    [27]
    徐永福, 程岩, 唐宏华. 膨胀土边坡失稳特征及其防治技术标准化[J]. 中南大学学报(自然科学版), 2022, 53(1): 1–20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201001.htm

    XU Yong-fu, CHENG Yan, TANG Hong-hua. Failure characteristics of expansive soil slope and standardization of slope slide prevention by geotextile bag[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 1–20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201001.htm
    [28]
    XU Y F, ZHANG H R. Design of soilbag-protected slopes in expansive soils[J]. Geotextiles and Geomembranes, 2021, 49(4): 1036–1045. doi: 10.1016/j.geotexmem.2021.02.001
    [29]
    KATTI R K, BHANGALE E S, MOZA K K. Lateral pressure in expansive soil with and without a cohesive non-swelling soil layer-application to earth pressures on cross drainage structures in canals and key walls in dams (Studies on K0 Condition), Technical Report 32. Central Board of Irrigation and Power, New Delhi, India, 1983.
    [30]
    蒋世庭, 喻明灯, 雷云佩. 膨胀土边坡双排抗滑桩土压力监测与分析[J]. 铁道科学与工程学报, 2011, 8(6): 70–74. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201106015.htm

    JIANG Shi-ting, YU Ming-deng, LEI Yun-pei. Monitoring and analysis of earth pressure on double-row anti-slide piles in expansive soil landslide[J]. Journal of Railway Science and Engineering, 2011, 8(6): 70–74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201106015.htm
    [31]
    混凝土结构设计规范: GB50010—2010[S]. 2010.

    Technical Code for Design of Concrete Structures: GB50010—2010[S]. 2010. (in Chinese)
    [32]
    肖杰, 杨和平, 符浩, 等. 膨胀土边坡加筋作用的对比模型试验[J]. 中国公路学报, 2014, 27(7): 24–31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201407005.htm

    XIAO Jie, YANG He-ping, FU Hao, et al. Comparison model test on effect of geogrid reinforcement for expansive soil slope[J]. China Journal of Highway and Transport, 2014, 27(7): 24–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201407005.htm
    [33]
    陈冠一, 肖杰, 陈强, 等. 不同毛细阻滞覆盖层处治膨胀土边坡的渗流及稳定性研究[J]. 中南大学学报(自然科学版), 2022, 53(1): 199–213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201009.htm

    CHEN Guan-yi, XIAO Jie, CHEN Qiang, et al. Study on seepage and stability of expansive soil slope treated by different capillary barrier cover layers[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 199–213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201009.htm
    [34]
    林宇亮, 张震, 罗桂军, 等. 膨胀土边坡的水平膨胀力及桩板结构内力分析[J]. 中南大学学报(自然科学版), 2022, 53(1): 140–149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201005.htm

    LIN Yu-liang, ZHANG Zhen, LUO Gui-jun, et al. Analysis of lateral swelling pressure of expansive soil slope and internal force of pile-sheet structure[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 140–149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201005.htm
    [35]
    HRYCIW R D. Anchor design for slope stabilization by surface loading[J]. Journal of Geotechnical Engineering, 1991, 117(8): 1260–1274.
    [36]
    HRYCIW R D, IRSYAM M. Pullout stiffness of elastic anchors in slope stabilization systems[J]. Journal of Geotechnical Engineering, 1992, 118(6): 902–919.
  • Cited by

    Periodical cited type(8)

    1. 张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
    2. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    3. 王彦武,郭青林,赵腾远,张燕芳,刘晓颖,裴强强,朱毓. 基于温度补偿的5TE传感器含水率监测数据校正方法研究. 石窟与土遗址保护研究. 2024(01): 4-16 .
    4. 陈朗,陈娱,何俊霖,吕淑宁. 基于前期累积降雨和高斯过程回归模型的滑坡位移预测. 岩石力学与工程学报. 2024(S1): 3491-3497 .
    5. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    6. 刘杰. 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测. 煤炭学报. 2024(S1): 92-107 .
    7. 原钢,刘杰. 基于多参数输入与输出高斯过程回归的锚杆支护状态预测. 液压气动与密封. 2023(11): 47-50 .
    8. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .

    Other cited types(1)

Catalog

    Article views (371) PDF downloads (184) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return