• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHI Jin-quan, XIAO Yang, LIU Han-long, Wim Haegeman. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. DOI: 10.11779/CJGE202202014
Citation: SHI Jin-quan, XIAO Yang, LIU Han-long, Wim Haegeman. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. DOI: 10.11779/CJGE202202014

Experimental study on small-strain shear modulus of calcareous sand

More Information
  • Received Date: May 05, 2021
  • Available Online: September 22, 2022
  • The small-strain shear modulus is an important parameter indicating soil stiffness in geotechnical engineering. In this study, the multidirectional bender element technique is used to investigate the small-strain shear modulus of calcareous sand from Persian Gulf. The effects of the coefficient of gradation, mean particle size and stress history on GHH, GHV and GVH on both vertical and horizontal planes are considered. The test results show that for the calcareous sand used in this study, the stiffness anisotropy is significant, behaving as the higher GHH than GHV and GVH. Gmax increases with the increase of D50 and decreases with the increase of Cu. The values of Gmax at the loading stage are apparently higher than those at the unloading stage. Finally, the Hardin equation for predicting the small-strain shear modulus is modified with the participation of D50, Cu and OCR, and a better prediction capability is obtained by comparing the traditional Hardin equation.
  • [1]
    刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32–37, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm

    LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32–37, 44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
    [2]
    张季如, 华晨, 罗明星, 等. 三轴排水剪切下钙质砂的颗粒破碎特性[J]. 岩土工程学报, 2020, 42(9): 1593–1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009007.htm

    ZHANG Ji-ru, HUA Chen, LUO Ming-xing, et al. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593–1602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009007.htm
    [3]
    马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981–988. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905027.htm

    MA Wei-jia, CHEN Guo-xing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981–988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905027.htm
    [4]
    XIAO Y, WANG C G, ZHANG Z C, et al. Constitutive modeling for two sands under high pressure[J]. International Journal of Geomechanics, 2021, 21(5): 04021042. doi: 10.1061/(ASCE)GM.1943-5622.0001987
    [5]
    XIAO Y, YUAN Z X, CHU J, et al. Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression[J]. Acta Geotechnica, 2019, 14(6): 1741–1755. doi: 10.1007/s11440-019-00790-1
    [6]
    XIAO Y, LIU H L, CHEN Q S, et al. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process[J]. Acta Geotechnica, 2017, 12(5): 1177–1184. doi: 10.1007/s11440-017-0580-y
    [7]
    XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057. doi: 10.1061/(ASCE)GT.1943-5606.0002141
    [8]
    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989–995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm

    CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989–995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
    [9]
    XIAO Y, YUAN Z X, DESAI C S, et al. Effects of load duration and stress level on deformation and particle breakage of carbonate sands[J]. International Journal of Geomechanics, 2020, 20(7): 06020014. doi: 10.1061/(ASCE)GM.1943-5622.0001731
    [10]
    王磊, 蒋翔, 肖杨, 等. 钙质砂颗粒的尺寸效应及雪崩动力学特性试验研究[J]. 岩土工程学报, 2021, 43(6): 1029–1038. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106009.htm

    WANG Lei, JIANG Xiang, XIAO Yang, et al. Experimental research on size effect and avalanche dynamics characteristics of calcareous sand particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1029–1038. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106009.htm
    [11]
    刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
    [12]
    肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511–519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm

    XIAO Peng, LIU Han-long, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511–519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm
    [13]
    XIAO P, LIU H L, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849–1862. doi: 10.1139/cgj-2018-0573
    [14]
    BURLAND J B. Ninth Laurits Bjerrum Memorial Lecture: "Small is beautiful"—the stiffness of soils at small strains[J]. Canadian Geotechnical Journal, 1989, 26(4): 499–516. doi: 10.1139/t89-064
    [15]
    YAMASHITA S, JAMIOLKOWSKI M, PRESTI D C F L. Stiffness nonlinearity of three sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10): 929–938. doi: 10.1061/(ASCE)1090-0241(2000)126:10(929)
    [16]
    PAYAN M, KHOSHGHALB A, SENETAKIS K, et al. Effect of particle shape and validity of Gmaxmodels for sand: a critical review and a new expression[J]. Computers and Geotechnics, 2016, 72: 28–41. doi: 10.1016/j.compgeo.2015.11.003
    [17]
    OTSUBO M, O'SULLIVAN C, SIM W W, et al. Quantitative assessment of the influence of surface roughness on soil stiffness[J]. Géotechnique, 2015, 65(8): 694–700. doi: 10.1680/geot.14.T.028
    [18]
    梁珂, 陈国兴, 杭天柱, 等. 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963–1970, 1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm

    LIANG Ke, CHEN Guo-xing, HANG Tian-zhu, et al. A new prediction model of small-strain shear modulus of sandy soils[J]. Rock and Soil Mechanics, 2020, 41(6): 1963–1970, 1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm
    [19]
    WICHTMANN T, TRIANTAFYLLIDIS T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax[J]. Journal of geotechnical and geoenvironmental engineering, 2009, 135(10): 1404–1418. doi: 10.1061/(ASCE)GT.1943-5606.0000096
    [20]
    SHI J Q, HAEGEMAN W, CNUDDE V. Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradation[J]. Géotechnique, 2021, 71(4): 305–319. doi: 10.1680/jgeot.18.P.348
    [21]
    吴琪, 刘抗, 郭启洲, 等. 基于二元介质模型的砂类土小应变剪切模量评价方法[J]. 岩土力学, 2020, 41(11): 3641–3650. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm

    WU Qi, LIU Kang, GUO Qi-zhou, et al. A new method for evaluating small-strain shear modulus of sandy soils based on binary medium model[J]. Rock and Soil Mechanics, 2020, 41(11): 3641–3650. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm
    [22]
    张涛, 刘松玉, 蔡国军. 固化粉土小应变剪切模量与强度增长相关性研究[J]. 岩土工程学报, 2015, 37(11): 1955–1964. doi: 10.11779/CJGE201511003

    ZHANG Tao, LIU Song-yu, CAI Guo-jun. Relationship between small-strain shear modulus and growth of strength for stabilized silt[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1955–1964. (in Chinese) doi: 10.11779/CJGE201511003
    [23]
    SHI J Q, HAEGEMAN W, XU T. Effect of non-plastic fines on the anisotropic small strain stiffness of a calcareous sand[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106381. doi: 10.1016/j.soildyn.2020.106381
    [24]
    DONG Y, LU N. Dependencies of shear wave velocity and shear modulus of soil on saturation[J]. Journal of Engineering Mechanics, 2016, 142(11): 04016083. doi: 10.1061/(ASCE)EM.1943-7889.0001147
    [25]
    PAYAN M, KHOSHGHALB A, SENETAKIS K, et al. Small-strain stiffness of sand subjected to stress anisotropy[J]. Soil Dynamics and Earthquake Engineering, 2016, 88: 143–151. doi: 10.1016/j.soildyn.2016.06.004
    [26]
    FIORAVANTE V, GIRETTI D, JAMIOLKOWSKI M. Small strain stiffness of carbonate Kenya Sand[J]. Engineering Geology, 2013, 161: 65–80.
    [27]
    YOUN J U, CHOO Y W, KIM D S. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests[J]. Canadian Geotechnical Journal, 2008, 45(10): 1426–1438.
    [28]
    周燕国, 沈涛, 王越, 等. 基督城易液化场地震后小应变剪切刚度演化规律研究[J]. 岩土工程学报, 2020, 42(8): 1411–1417. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008008.htm

    ZHOU Yan-guo, SHEN Tao, WANG Yue, et al. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411–1417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008008.htm
    [29]
    HARDIN B O, BLACK W L. Sand stiffness under various triaxial stresses[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(2): 27–42. doi: 10.1061/JSFEAQ.0000865
    [30]
    JAMIOLKOWSKI M, LANCELLOTTA R, LO PRESTI D C F. Remarks on the stiffness at small strains of six Italian clays. Pre-failure deformation of geomaterials[J], 1995, 2: 817–836.
    [31]
    WICHTMANN T, NAVARRETE HERNÁNDEZ M A, TRIANTAFYLLIDIS T. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 103–114.
    [32]
    GOUDARZY M, RAHMAN M M, KÖNIG D, et al. Influence of non-plastic fines content on maximum shear modulus of granular materials[J]. Soils and Foundations, 2016, 56(6): 973–983.
    [33]
    German Institute for Standardization. Soil Quality Determination of Particle Size Distribution in Mineral Soil Material Method by Sieving and Sedimentation[R]. Berlin: German Institute for Standardization, 2002.
    [34]
    CHANEY R C, DEMARS K R, FIORAVANTE V, et al. On the use of multi-directional piezoelectric transducers in triaxial testing[J]. Geotechnical Testing Journal, 2001, 24(3): 243.
    [35]
    SHI J Q, HAEGEMAN W, ANDRIES J. Investigation on the mechanical properties of a calcareous sand: the role of the initial fabric[J]. Marine Georesources & Geotechnology, 2021, 39(7): 859–875.
    [36]
    SHI J Q, HAEGEMAN W, MASCINI A, et al. X-ray analysis on the effect of sample preparation on the microstructure of calcareous sands[J]. Marine Georesources & Geotechnology, 2021, 39(3): 302–311.
    [37]
    SELIG E T, LADD R S. Preparing test specimens using undercompaction[J]. Geotechnical Testing Journal, 1978, 1(1): 16.

Catalog

    Article views (298) PDF downloads (193) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return