Citation: | SHI Jin-quan, XIAO Yang, LIU Han-long, Wim Haegeman. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. DOI: 10.11779/CJGE202202014 |
[1] |
刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32–37, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32–37, 44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
|
[2] |
张季如, 华晨, 罗明星, 等. 三轴排水剪切下钙质砂的颗粒破碎特性[J]. 岩土工程学报, 2020, 42(9): 1593–1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009007.htm
ZHANG Ji-ru, HUA Chen, LUO Ming-xing, et al. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593–1602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009007.htm
|
[3] |
马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981–988. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905027.htm
MA Wei-jia, CHEN Guo-xing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981–988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905027.htm
|
[4] |
XIAO Y, WANG C G, ZHANG Z C, et al. Constitutive modeling for two sands under high pressure[J]. International Journal of Geomechanics, 2021, 21(5): 04021042. doi: 10.1061/(ASCE)GM.1943-5622.0001987
|
[5] |
XIAO Y, YUAN Z X, CHU J, et al. Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression[J]. Acta Geotechnica, 2019, 14(6): 1741–1755. doi: 10.1007/s11440-019-00790-1
|
[6] |
XIAO Y, LIU H L, CHEN Q S, et al. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process[J]. Acta Geotechnica, 2017, 12(5): 1177–1184. doi: 10.1007/s11440-017-0580-y
|
[7] |
XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057. doi: 10.1061/(ASCE)GT.1943-5606.0002141
|
[8] |
蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989–995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989–995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
|
[9] |
XIAO Y, YUAN Z X, DESAI C S, et al. Effects of load duration and stress level on deformation and particle breakage of carbonate sands[J]. International Journal of Geomechanics, 2020, 20(7): 06020014. doi: 10.1061/(ASCE)GM.1943-5622.0001731
|
[10] |
王磊, 蒋翔, 肖杨, 等. 钙质砂颗粒的尺寸效应及雪崩动力学特性试验研究[J]. 岩土工程学报, 2021, 43(6): 1029–1038. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106009.htm
WANG Lei, JIANG Xiang, XIAO Yang, et al. Experimental research on size effect and avalanche dynamics characteristics of calcareous sand particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1029–1038. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106009.htm
|
[11] |
刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
|
[12] |
肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511–519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm
XIAO Peng, LIU Han-long, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511–519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm
|
[13] |
XIAO P, LIU H L, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849–1862. doi: 10.1139/cgj-2018-0573
|
[14] |
BURLAND J B. Ninth Laurits Bjerrum Memorial Lecture: "Small is beautiful"—the stiffness of soils at small strains[J]. Canadian Geotechnical Journal, 1989, 26(4): 499–516. doi: 10.1139/t89-064
|
[15] |
YAMASHITA S, JAMIOLKOWSKI M, PRESTI D C F L. Stiffness nonlinearity of three sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10): 929–938. doi: 10.1061/(ASCE)1090-0241(2000)126:10(929)
|
[16] |
PAYAN M, KHOSHGHALB A, SENETAKIS K, et al. Effect of particle shape and validity of Gmaxmodels for sand: a critical review and a new expression[J]. Computers and Geotechnics, 2016, 72: 28–41. doi: 10.1016/j.compgeo.2015.11.003
|
[17] |
OTSUBO M, O'SULLIVAN C, SIM W W, et al. Quantitative assessment of the influence of surface roughness on soil stiffness[J]. Géotechnique, 2015, 65(8): 694–700. doi: 10.1680/geot.14.T.028
|
[18] |
梁珂, 陈国兴, 杭天柱, 等. 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963–1970, 1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm
LIANG Ke, CHEN Guo-xing, HANG Tian-zhu, et al. A new prediction model of small-strain shear modulus of sandy soils[J]. Rock and Soil Mechanics, 2020, 41(6): 1963–1970, 1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm
|
[19] |
WICHTMANN T, TRIANTAFYLLIDIS T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax[J]. Journal of geotechnical and geoenvironmental engineering, 2009, 135(10): 1404–1418. doi: 10.1061/(ASCE)GT.1943-5606.0000096
|
[20] |
SHI J Q, HAEGEMAN W, CNUDDE V. Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradation[J]. Géotechnique, 2021, 71(4): 305–319. doi: 10.1680/jgeot.18.P.348
|
[21] |
吴琪, 刘抗, 郭启洲, 等. 基于二元介质模型的砂类土小应变剪切模量评价方法[J]. 岩土力学, 2020, 41(11): 3641–3650. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm
WU Qi, LIU Kang, GUO Qi-zhou, et al. A new method for evaluating small-strain shear modulus of sandy soils based on binary medium model[J]. Rock and Soil Mechanics, 2020, 41(11): 3641–3650. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm
|
[22] |
张涛, 刘松玉, 蔡国军. 固化粉土小应变剪切模量与强度增长相关性研究[J]. 岩土工程学报, 2015, 37(11): 1955–1964. doi: 10.11779/CJGE201511003
ZHANG Tao, LIU Song-yu, CAI Guo-jun. Relationship between small-strain shear modulus and growth of strength for stabilized silt[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1955–1964. (in Chinese) doi: 10.11779/CJGE201511003
|
[23] |
SHI J Q, HAEGEMAN W, XU T. Effect of non-plastic fines on the anisotropic small strain stiffness of a calcareous sand[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106381. doi: 10.1016/j.soildyn.2020.106381
|
[24] |
DONG Y, LU N. Dependencies of shear wave velocity and shear modulus of soil on saturation[J]. Journal of Engineering Mechanics, 2016, 142(11): 04016083. doi: 10.1061/(ASCE)EM.1943-7889.0001147
|
[25] |
PAYAN M, KHOSHGHALB A, SENETAKIS K, et al. Small-strain stiffness of sand subjected to stress anisotropy[J]. Soil Dynamics and Earthquake Engineering, 2016, 88: 143–151. doi: 10.1016/j.soildyn.2016.06.004
|
[26] |
FIORAVANTE V, GIRETTI D, JAMIOLKOWSKI M. Small strain stiffness of carbonate Kenya Sand[J]. Engineering Geology, 2013, 161: 65–80.
|
[27] |
YOUN J U, CHOO Y W, KIM D S. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests[J]. Canadian Geotechnical Journal, 2008, 45(10): 1426–1438.
|
[28] |
周燕国, 沈涛, 王越, 等. 基督城易液化场地震后小应变剪切刚度演化规律研究[J]. 岩土工程学报, 2020, 42(8): 1411–1417. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008008.htm
ZHOU Yan-guo, SHEN Tao, WANG Yue, et al. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411–1417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008008.htm
|
[29] |
HARDIN B O, BLACK W L. Sand stiffness under various triaxial stresses[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(2): 27–42. doi: 10.1061/JSFEAQ.0000865
|
[30] |
JAMIOLKOWSKI M, LANCELLOTTA R, LO PRESTI D C F. Remarks on the stiffness at small strains of six Italian clays. Pre-failure deformation of geomaterials[J], 1995, 2: 817–836.
|
[31] |
WICHTMANN T, NAVARRETE HERNÁNDEZ M A, TRIANTAFYLLIDIS T. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 103–114.
|
[32] |
GOUDARZY M, RAHMAN M M, KÖNIG D, et al. Influence of non-plastic fines content on maximum shear modulus of granular materials[J]. Soils and Foundations, 2016, 56(6): 973–983.
|
[33] |
German Institute for Standardization. Soil Quality Determination of Particle Size Distribution in Mineral Soil Material Method by Sieving and Sedimentation[R]. Berlin: German Institute for Standardization, 2002.
|
[34] |
CHANEY R C, DEMARS K R, FIORAVANTE V, et al. On the use of multi-directional piezoelectric transducers in triaxial testing[J]. Geotechnical Testing Journal, 2001, 24(3): 243.
|
[35] |
SHI J Q, HAEGEMAN W, ANDRIES J. Investigation on the mechanical properties of a calcareous sand: the role of the initial fabric[J]. Marine Georesources & Geotechnology, 2021, 39(7): 859–875.
|
[36] |
SHI J Q, HAEGEMAN W, MASCINI A, et al. X-ray analysis on the effect of sample preparation on the microstructure of calcareous sands[J]. Marine Georesources & Geotechnology, 2021, 39(3): 302–311.
|
[37] |
SELIG E T, LADD R S. Preparing test specimens using undercompaction[J]. Geotechnical Testing Journal, 1978, 1(1): 16.
|