• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Jing, HAN Cong-cong, LIU Jun, KONG Xian-jing. Experimental investigation on uplift behaviors of mudmats on soft clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2097-2105. DOI: 10.11779/CJGE202211016
Citation: WANG Jing, HAN Cong-cong, LIU Jun, KONG Xian-jing. Experimental investigation on uplift behaviors of mudmats on soft clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2097-2105. DOI: 10.11779/CJGE202211016

Experimental investigation on uplift behaviors of mudmats on soft clay

More Information
  • Received Date: October 31, 2021
  • Available Online: December 08, 2022
  • The subsea mudmats are usually used to support subsea structures. When the mudmat, located on the surface of soft clayey seabed, is subjected to uplift loads, the suction force is generated at the mudmat-soil interface. The suction is beneficial in improving the stability of the mudmat, but is disadvantageous in retrieving the mudmat. Therefore, it is necessary to investigate the invert suction systematically. A series of model tests are conducted to investigate the uplift capacity of the mudmat resting on the homogeneous or lightly overconsolidated clay. The factors influencing the uplift capacity are investigated, including the uplift velocity, the soil strength, the soil heterogeneity and the degree of consolidation. Several pore pressure transducers are installed at the invert of the model mudmat to measure the generation, development, distribution and dissipation of the pore water pressure. The test results show that the uplift capacity of the mudmat is provided by the invert suction. Meanwhile, the results show that the uplift capacity and the average suction at the invert of the mudmat the increase with increasing uplift velocity, heterogeneity and degree of consolidation. In addition, it is found that the suction near the centre of the mudmat invert is greater and disappears later than that at the margin. In order to reduce the invert suction through perforating, the optimal position of perforations should be set at the centre of the mudmat.
  • [1]
    American Petroleum Institute. RP 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[M]. Washington: API Publishing Services, 2002.
    [2]
    FENG X, RANDOLPH M F, GOURVENEC S, et al. Design approach for rectangular mudmats under fully three-dimensional loading[J]. Géotechnique, 2014, 64(1): 51–63. doi: 10.1680/geot.13.P.051
    [3]
    FENG X, GOURVENEC S. Consolidated undrained load-carrying capacity of subsea mudmats under combined loading in six degrees of freedom[J]. Géotechnique, 2015, 65(7): 563–575. doi: 10.1680/geot.14.P.090
    [4]
    BOUWMEESTER D, PEUCHEN J, VAN der Wal T, et al. Prediction of breakout force for deep water seafloor objects[C]// Proceedings of the Offshore Technology Conference. Houston, 2009.
    [5]
    REID M. Re-deployable Subsea Foundations[D]. Cambridge: University of Cambridge, 2007.
    [6]
    FINN W D, BYRNE P M. The evaluation of the break-out force for a submerged ocean platform[C]// Proceedingsofthe Offshore Technology Conference. Houston, 1972.
    [7]
    BYRNE P M, FINN W D L. Breakout of submerged structures buried to a shallow depth[J]. Canadian Geotechnical Journal, 1978, 15(2): 146–154. doi: 10.1139/t78-015
    [8]
    LEHANE B M, GAUDIN C, RICHARDS D J, et al. Rate effects on the vertical uplift capacity of footings founded in clay[J]. Géotechnique, 2008, 58(1): 13–21. doi: 10.1680/geot.2008.58.1.13
    [9]
    CHEN R, GAUDIN C, CASSIDY M J. Investigation of the vertical uplift capacity of deep water mudmats in clay[J]. Canadian Geotechnical Journal, 2012, 49(7): 853–865. doi: 10.1139/t2012-037
    [10]
    刘润, 孔金鹏, 刘孟孟, 等. 饱和软黏土中开孔防沉板基础上拔特性研究[J]. 岩土工程学报, 2019, 41(8): 1427–1434. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17967.shtml

    LIU Run, KONG Jin-peng, LIU Meng-meng, et al. Uplift behaviors of perforated mudmats in soft saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1427–1434. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17967.shtml
    [11]
    冯国栋, 刘祖德, 俞季民, 等. 海泥对海洋工程沉垫底面吸附力的试验研究[J]. 武汉水利电力学院学报, 1981(1): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198101000.htm

    FENG Guo-dong, LIU Zu-de, YU Ji-min, et al. Experimental study on the suction force beneath the marine cushion[J]. Engineering Journal of Wuhan University, 1981(1): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198101000.htm
    [12]
    韩丽华, 姜萌, 张日向. 海洋结构物沉箱吸附力的试验模拟[J]. 港工技术, 2009, 6(6): 43–45. https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG200906015.htm

    HAN Li-hua, JIANG Meng, ZHANG Ri-xiang. Experiment simulation of absorption force of marine structure caisson[J]. Port Engineering Technology, 2009, 6(6): 43–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG200906015.htm
    [13]
    GOURVENEC S, ACOSTA-MARTINEZ H E, RANDOLPH M F. Experimental study of uplift resistance of shallow skirted foundations in clay under transient and sustained concentric loading[J]. Géotechnique, 2009, 59(6): 525–537. doi: 10.1680/geot.2007.00108
    [14]
    RANDOLPH M F, GAUDIN C, GOURVENEC S M, et al. Recent advances in offshore geotechnics for deep water oil and gas developments[J]. Ocean Engineering, 2011, 38(7): 818–834. doi: 10.1016/j.oceaneng.2010.10.021
    [15]
    MARTIN C M, RANDOLPH M F. Applications of the lower and upper bound theorems of plasticity to collapse of circular foundations[C]// Proceedings of 10th Int Conf on Computer Methods and Advances in Geomechanics. Abingdon, 2001.
    [16]
    EINAV I, RANDOLPH M F. Combining upper bound and strain path methods for evaluating penetration resistance[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1991–2016. doi: 10.1002/nme.1350
    [17]
    FINNIE I M S, RANDOLPH M F. Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments[C]// Proceedings of the International Conference on Behaviour of Offshore Structures. Boston, 1994.
    [18]
    LI X, GAUDIN C, TIAN Y, et al. Effects of preloading and consolidation on the uplift capacity of skirted foundations[J]. Géotechnique, 2015, 65(12): 1010–1022. doi: 10.1680/jgeot.15.P.026
    [19]
    HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327–350. doi: 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
    [20]
    GOURVENEC S M, MANA D S K. Undrained vertical bearing capacity factors for shallow foundations[J]. Géotechnique Letters, 2011, 1(4): 101–108. doi: 10.1680/geolett.11.00026
    [21]
    LIU J, HU Y X. The effect of strength anisotropy on the bearing capacity of spudcan foundations[J]. Computers and Geotechnics, 2009, 36(1/2): 125–134. https://www.sciencedirect.com/science/article/pii/S0266352X08000177
    [22]
    LADD C C. Stability evaluation during staged constructures[J]. Journal of Geotechnical Engineering, 1991, 117(4): 540–615. doi: 10.1061/%28ASCE%290733-9410%281991%29117%3A4%28540%29
  • Cited by

    Periodical cited type(4)

    1. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    2. 胡文强,周航,刘汉龙. XCC桩群桩沉桩挤土效应透明土模型试验研究. 土木与环境工程学报(中英文). 2024(06): 107-115 .
    3. 丁雪涛,潘殿琦,王明威. CPT阻力受土层界面效应影响的数值模拟. 实验室研究与探索. 2023(05): 26-31+36 .
    4. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .

    Other cited types(3)

Catalog

    Article views (151) PDF downloads (29) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return