• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Yang, WANG Wei-yi, DU Chun-sheng. Model tests on stability and ultimate support pressure of shield tunnel in sand-gravel composite stratum[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2206-2214. DOI: 10.11779/CJGE202012006
Citation: SONG Yang, WANG Wei-yi, DU Chun-sheng. Model tests on stability and ultimate support pressure of shield tunnel in sand-gravel composite stratum[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2206-2214. DOI: 10.11779/CJGE202012006

Model tests on stability and ultimate support pressure of shield tunnel in sand-gravel composite stratum

More Information
  • Received Date: March 24, 2020
  • Available Online: December 05, 2022
  • For the shield-tunneling in sand-gravel composite stratum, if the support force is too small, it will easily lead to active destruction of soils in front of the excavation face and cause surface settlement. A parameter for the sand-gravel composite stratum is defined, that is the ratio of height of silty fine sand in excavation face to the cutter diameter of shield machine. Its effects on the ultimate support force, surface settlement and disturbance range of excavation face instability are analyzed. Based on the model tests and the silo theory, a computational model for the ultimate support force of excavation face of shield tunnels is established. It is introduced into the model, and the relevant formula is derived. The results show that: (1) With the decrease of the support force of the excavation face, the lateral earth pressure-support force curve exhibits the laws of insensitive stage, rapid declining stage, slow declining stage and stable stage. (2) The larger the value of σ is, the less conducive the control of surface settlement is. (3) Compared with that by the traditional model, the failure surface being approximately a broken line by the proposed method is more suitable for the deformation and failure mode of sand-gravel composite stratum. (4) The ultimate support force increases in an approximate linear functional relationship with the increase of σ. When the depth of overburden is large, the effects ofσ on the ultimate support force should be paid more attention to. (5) In the shallow stratum, the effects of overburden depth on the ultimate support force are more obvious, and need to be paid attention to. The research results have important guiding significance to determining the ultimate support force of excavation face in sand-gravel composite stratum.
  • [1]
    袁大军, 沈翔, 刘学彦, 等. 泥水盾构开挖面稳定性研究[J]. 中国公路学报, 2017, 30(8): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708003.htm

    YUAN Da-jun, SHEN Xiang, LIU Xue-yan, et al. Study on stability of excavation face of mud-water shield[J]. China Journal of Highway and Transport, 2017, 30(8): 24-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708003.htm
    [2]
    HORN M. Horizontal earth pressure on perpendicular tunnel face[C]//Proceedings of the Hungarian National Conference of the Foundation Engineer Industry Hungarian, 1961, Budapest.
    [3]
    JANSSEN H A. Versuche fiber getreidedruck in silozellen[J]. Zeitschrift des Vereins DeutscherIngenieure, 1895, 39(35): 1045-1049.
    [4]
    JANCSECZ S, STEINER W. Face support for a large mix-shield in heterogeneous ground conditions[C]//Proceeding of the 7 th International Symposium on Tunneling. London: Taylor and Francis, 1994.
    [5]
    ANAGNOSTOU G, KOVARI K. The face stability of slurry-shield-driven tunnels[J]. Tunneling and Underground Space Technology, 1994, 9(2): 165-174. doi: 10.1016/0886-7798(94)90028-0
    [6]
    ANAGNOSTOU G, KVOARL K. Face stability conditions with Earth-Pressure-BalancedShields[J]. Tunneling and Underground Space Technology, 1996, 11(2): 165-173. doi: 10.1016/0886-7798(96)00017-X
    [7]
    赵明华, 毛韬, 牛浩懿, 等. 上硬下软地层盾构隧道开挖面极限支护力分析[J]. 湖南大学学报(自然科学版), 2016, 43(1): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201601014.htm

    ZHAO Ming-hua, MAO Tao, NIU Hao-jin, et al. Extreme supporting force analysis of shield tunnel excavation faces in upper and lower soft stratum[J]. Journal of Hunan University (Natural Science), 2016, 43(1): 103-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201601014.htm
    [8]
    陈仁朋, 李君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(1): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101022.htm

    CHEN Ren-peng, LI Jun, CHEN Yun-min, et al. Experimental study on stability of excavated face of dry sand shield tunneling[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 117-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101022.htm
    [9]
    吕玺琳, 曾盛, 王远鹏, 等. 饱和圆砾地层盾构隧道开挖面稳定性物理模型试验[J]. 岩土工程学报, 2019, 41(增刊2): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2034.htm

    LU Xi-lin, ZENG Sheng, WANG Yuan-peng, et al. Physical model test of stability of excavation face of shield tunnel in saturated cobbledstratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 129-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2034.htm
    [10]
    宋洋, 张维东, 王贺平, 等. 浅覆地层盾构开挖面被动破坏极限支护力及破坏模式研究[J]. 防灾减灾工程学报, 2019, 39(5): 748-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201905008.htm

    SONG Yang, ZHANG Wei-dong, WANG He-ping, et al. Research on the passive support limit and failure mode of the passive damage of shallow shield shield excavation face[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(5): 748-754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201905008.htm
    [11]
    王士民, 陈兵, 王先明, 等. 盾构隧道二次衬砌合理施作时机模型试验研究[J]. 岩土工程学报, 2020, 42(5): 882-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005014.htm

    WANG Shi-min, CHEN Bing, WANG Xian-ming, et al. Model test research on the reasonable operation timing of secondary lining of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 882-891. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005014.htm
    [12]
    PECK R B. Deep excavations and tunneling in soft ground[C]//Proceeding of 7th International Conference on Soil Mechanics and Foundation Engineering, 1969, Mexico.
    [13]
    秦建设. 盾构施工开挖面变形与破坏机理研究[D]. 南京: 河海大学, 2005.

    QIN Jian-she. Study on Deformation and Failure Mechanism of Shield Excavation Face[D]. Nanjing: Hohai University, 2005. (in Chinese)
    [14]
    LEE I M, LEE J S, NAM S W. Effect of seepage force on tunnelface stability reinforced with multi-step pipe grouting[J]. Tunnelling and Underground Space Technology, 2004, 19(6): 51-565.
    [15]
    T ERZAUHI K. Theoretical Soil Mechanics[M]. New York: John Wiley and Sons, 1943: 66-76.
    [16]
    SCHMIDT B. Discussion on “Earth pressure at rest related to stress history”[J]. Canadian Ueotechnical Journal, 1996, 3(4): 239-242.
  • Cited by

    Periodical cited type(8)

    1. 张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
    2. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    3. 王彦武,郭青林,赵腾远,张燕芳,刘晓颖,裴强强,朱毓. 基于温度补偿的5TE传感器含水率监测数据校正方法研究. 石窟与土遗址保护研究. 2024(01): 4-16 .
    4. 陈朗,陈娱,何俊霖,吕淑宁. 基于前期累积降雨和高斯过程回归模型的滑坡位移预测. 岩石力学与工程学报. 2024(S1): 3491-3497 .
    5. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    6. 刘杰. 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测. 煤炭学报. 2024(S1): 92-107 .
    7. 原钢,刘杰. 基于多参数输入与输出高斯过程回归的锚杆支护状态预测. 液压气动与密封. 2023(11): 47-50 .
    8. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .

    Other cited types(1)

Catalog

    Article views (318) PDF downloads (142) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return