• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于非线性破坏准则的土坡稳定有限元上限分析

杨昕光, 迟世春

杨昕光, 迟世春. 基于非线性破坏准则的土坡稳定有限元上限分析[J]. 岩土工程学报, 2013, 35(9): 1759-1764.
引用本文: 杨昕光, 迟世春. 基于非线性破坏准则的土坡稳定有限元上限分析[J]. 岩土工程学报, 2013, 35(9): 1759-1764.
YANG Xin-guang, CHI Shi-chun. Upper bound FEM analysis of slope stability using a nonlinear failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1759-1764.
Citation: YANG Xin-guang, CHI Shi-chun. Upper bound FEM analysis of slope stability using a nonlinear failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1759-1764.

基于非线性破坏准则的土坡稳定有限元上限分析  English Version

基金项目: 国家自然科学基金项目(50979014,51179024)
详细信息
    作者简介:

    杨昕光(1983- ),男,内蒙古赤峰人,博士研究生,主要从事土石坝地震工程、土工数值计算与分析等方面研究。E-mail: yyfreshman@163.com。

  • 中图分类号: TU441

Upper bound FEM analysis of slope stability using a nonlinear failure criterion

  • 摘要: 材料的非线性破坏准则是指材料的强度与应力相关,因此描述材料强度的前提是应力已知。现有土坡稳定的上限极限分析方法由于无法确定土坡内的应力分布而无法采用非线性强度准则。论文基于Mohr-Coulomb屈服准则和有限单元法,将边坡稳定上限极限分析形成标准二次锥规划数学模型,并转化为对偶问题的“静力形式”进行求解,从而可以确定边坡内部的应力分布,进而使用迭代的方法确定材料在非线性破坏准则下的等效剪切强度,最终得到问题的上限解。通过两个算例的计算分析,并与已有计算方法进行对比,验证了所提出方法的正确性,得到的上限解也更为严格、精确。
    Abstract: The upper bound finite element (FE) limit analysis is applied to stability problems of slopes using a nonlinear criterion. Generally speaking, the equivalent shear strength parameters of materials with a nonlinear failure criterion are expressed in terms of stress, which cannot be obtained directly by the upper bound method. Based on the Mohr-Coulomb criterion and FEM, the corresponding dual second-order cone programming (SOCP) problem of the upper bound limit analysis, which is considered as a static form, is formulated. By solving the dual problem, the distribution of stress of slopes can be obtained. Then, the equivalent shear strength parameters of materials can be determined iteratively so that the analysis of slope stability with a nonlinear failure criterion is able to be transformed into the traditional upper bound method. Finally, the results of two numerical examples are compared with the published solutions and demonstrate the accuracy and validity of the proposed method, by which the nonlinear failure criterion can be represented exactly.
  • [1] ZHANG X J, CHEN W F. Stability analysis of slopes with general nonlinear failure criterion[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(1): 33-50.
    [2] COLLINS I F, GUNN C I M, PENDER M J, et al. Slope stability analyses for materials with a nonlinear failure envelope[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(5): 533-550.
    [3] DRESCHER A, CHRISTOPOULOS C. Limit analysis slope stability with nonlinear yield condition[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(3): 341-345.
    [4] YANG Xiao-li, YIN Jian-hua. Slope stability analysis with nonlinear failure criterion[J]. Journal of Engineering Mechanics, ASCE, 2004, 130(3): 267-273.
    [5] MAKRODIMOPOULOS A, MARTIN C M. Upper bound limit analysis using simplex strain elements and second-order cone programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(6): 835-865.
    [6] MAKRODIMOPOULOS A, MARTIN C M. Upper bound limit analysis using discontinuous quadratic displacement fields[J]. Communications in Numerical Methods in Engineering, 2008, 24(11): 911-927.
    [7] 黄茂松, 杜佐龙, 宋春霞. 支护结构入土深度对黏土基坑抗隆起稳定的影响分析[J]. 岩土工程学报, 2011, 33(7): 1097-1103. (HUANG Mao-song, DU Zuo-long, SONG Chun-xia. Effects of inserted depth of wall penetration on basal stability of foundation pits in clay[J]. Chinese Jounal of Geotechnical Engineering, 2011, 33(7): 1097-1103. (in Chinese))
    [8] 何思明, 张晓曦, 欧阳朝军. 条形基础荷载对边坡稳定性影响与加固研究[J]. 岩土工程学报, 2011, 33(12): 1980-1986. (HE Si-ming, ZHANG Xiao-xi, OUYANG Chao-jun. Influences of loads of stripe footing on slope stability and its reinforcement[J]. Chinese Jounal of Geotechnical Engineering, 2011, 33(12): 1980-1986. (in Chinese))
    [9] 李 泽, 张小艳, 王均星. 基于刚性块体系统的岩质边坡稳定性下限法研究[J]. 岩土工程学报, 2012, 34(8): 1534-1540. (LI Ze, ZHANG Xiao-yan, WANG Jun-xing. Lower bound method for stability of rock slopes based on rigid block assemblages[J]. Chinese Jounal of Geotechnical Engineering, 2012, 34(8): 1534-1540. (in Chinese))
    [10] 秦会来, 陈祖煜, 刘立鹏. 基于上限理论的软土基坑抗隆起稳定分析方法[J]. 岩土工程学报, 2012, 34(9): 1611-1619. (QIN Hui-lai, CHEN Zu-yu, LIU Li-peng, Basal stability analysis for excavations in soft clay based on upper bound method[J]. Chinese Jounal of Geotechnical Engineering, 2012, 34(9): 1611-1619. (in Chinese))
    [11] DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165.
    [12] TÜTÜNCÜ R H, TOH K C, TODD M J. Solving semidefinite-quadratic-linear programs using SDPT3[J]. Mathematical Programming, 2003, 95(2): 189-217.
    [13] HOBBS D W. A study of the behavior of broken rock under triaxial compression and its application to mine roadways[J]. International Journal of Rock Mechanics and Mining Science, 1966, 3(1): 11-43.
    [14] DRESCHER A, DETOURNAY E. Limit load in translational failure mechanisms for associative and non-associative materials[J]. Géotechnique, 1993, 43(3): 443-456.
    [15] MICHALOWSKI R L, SHI L. Bearing capacity of footing over two-layer foundation soils[J]. Journal of Geotechnical Engineering, ASCE ,1995, 121(5): 421-428.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-29
  • 发布日期:  2013-09-21

目录

    /

    返回文章
    返回