• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

自适应有限元极限分析及岩土工程中的应用

李大钟, 郑榕明, 王金安, 杨毅, 李娜

李大钟, 郑榕明, 王金安, 杨毅, 李娜. 自适应有限元极限分析及岩土工程中的应用[J]. 岩土工程学报, 2013, 35(5): 922-929.
引用本文: 李大钟, 郑榕明, 王金安, 杨毅, 李娜. 自适应有限元极限分析及岩土工程中的应用[J]. 岩土工程学报, 2013, 35(5): 922-929.
LI Da-zhong, CHENG Yung-ming, WANG Jin-an, YANG Yi, LI Na. Application of finite-element-based limit analysis with mesh adaptation in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 922-929.
Citation: LI Da-zhong, CHENG Yung-ming, WANG Jin-an, YANG Yi, LI Na. Application of finite-element-based limit analysis with mesh adaptation in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 922-929.

自适应有限元极限分析及岩土工程中的应用  English Version

基金项目: 本重点实验室自2007年2月由教育部正式批准在同济大学立项建设以来,按照教育部重点实验室的开放要求,自2008年起面向国内外征集开放基金项目,连续五年批准了约30项国内外访问学者的申请,取得了持续对外开放、合作与交流的良好效果。经研究,本年度继续设立专项开放研究基金,资助国内外学者和科技工作者来实验室开展科研工作。
详细信息
    作者简介:

    李大钟(1984- ),男,山西朔州人,博士研究生,主要从事岩土工程极限分析及计算力学方面研究。E-mail: ambellstone@gmail.com。 王金安(1958-),男,河北昌黎人,教授、博士生导师。 王金安(1958-),男,河北昌黎人,教授、博士生导师。

  • 中图分类号: TU457

Application of finite-element-based limit analysis with mesh adaptation in geotechnical engineering

  • 摘要: 为了探讨有限元法极限分析的网格自适应以及锥优化算法在Mohr-Coulomb材料极限分析中的应用,以屈服准则残余和变形为依据提出针对Mohr-Coulomb材料极限分析的有限元自适应策略。对局部网格自适应结合非结构三角形网格在数值极限分析中的表现进行了探讨。通过基于有限元的极限分析方法结合网络自适应寻找潜在滑移面,从而极大程度地提高了数值计算精度。数值算例证明了所提出极限分析网格自适应准则的有效性以及在岩土极限分析中的应用前景。
    Abstract: Refinement strategy based on the yield function slack and deformation is proposed for the finite-element-based limit analysis (FELA) of Mohr-Coulomb materials. Performance of the local mesh adaptation for the unstructured mesh is examined. The potential slip surface is traced by the adaptive procedure incorporated in the FELA such that the accuracy of the obtained bound solution is dramatically improved. The efficiency and the validity of the proposed strategy are well backed up by results of applications in two classical stability problems in geomechanics, namely, the determination of the bearing capacity of strip footing on weightless soil mass and the critical height of a critical cut. The time required in the computation is provided as well which suggests that the numerical limit analysis is both practical and necessary with the newly developed local mesh adaptation and the second-order cone programming. The obtained results reflect the promising future of the FELA as an alternative to the conventional approaches in the stability analysis in geotechnical engineering.
  • [1] BANDINI P. Numerical limit analysis for slope stability and bearing capacity calculations[D]. West Lafayette: Purdue University, 2003.
    [2] MAKRODIMOPOULOS A. Computational formulation of shakedown analysis as a conic quadratic optimization problem[J]. Mechanics Research Communications, 2006,33(1):72-83.
    [3] KIM J. Limit analysis of soil slope stability using finite elements and linear programming[D]. West Lafayette: Purdue University, 1998.
    [4] KIM J, SALGADO R, LEE J. Stability analysis of complex soil slopes using limit analysis[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002,128(7):546-557.
    [5] YU H S, SALGADO R, SLOAN S W,et al. Limit analysis versus limit equilibrium for slope stability[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1998,124(1):1-11.
    [6] LYAMIN A V. Three-dimensional lower bound limit analysis using nonlinear programming[D]. Newcastle: University of Newcastle, 1999.
    [7] MAKRODIMOPOULOS A, MARTIN C M. Lower bound limit analysis of cohesive-frictional materials using second-order cone programming[J]. International Journal for Numerical Methods in Engineering, 2006,66(4):604-634.
    [8] HJIAJ M, LYAMIN A V, SLOAN S W. Numerical limit analysis solutions for the bearing capacity factor N-gamma [J]. International Journal of Solids and Structures, 2005,42(5/6):1681-1704.
    [9] CHRISTIANSEN E, EDMUND O S. Automatic mesh refinement in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2001,50(6):1331-1346.
    [10] BORGES L, ZOUAIN N, COSTA C,et al. An adaptive approach to limit analysis[J]. International Journal of Solids and Structures, 2001,38(10-13):1707-1720.
    [11] LYAMIN A V, SLOAN S W, KRABBENHOFT K,et al. Lower bound limit analysis with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2005,63(14):1961-1974.
    [12] CIRIA H. Computation of upper and lower bounds in limit analysis using second-order cone programming and mesh adaptivity[D]. Cambridge: Massachusetts Institute of Rechnology, 2002.
    [13] CIRIA H, PERAIRE J, BONET J. Mesh adaptive computation of upper and lower bounds in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2008,75(8):899-944.
    [14] MUNOZ J J, BONET J, HUERTA A,et al. Upper and lower bounds in limit analysis: Adaptive meshing strategies and discontinuous loading[J]. International Journal for Numerical Methods in Engineering, 2009,77(4):471-501.
    [15] KRABBENHOFT K, LYAMIN A V, SLOAN S W. Formulation and solution of some plasticity problems as conic programs[J]. International Journal of Solids and Structures, 2007,44(5):1533-1549.
    [16] MAKRODIMOPOULOS A, MARTIN C M. Computational formulation of shakedown analysis as a conic quadratic optimization problem[J]. Mechanics Research Communi- cations, 2006.
    33(1): 72-83.
    [17] MAKRODIMOPOULOS A. Remarks on some properties of conic yield restrictions in limit analysis[J]. International Journal for Numerical Methods in Biomedical Engineering, 2010,26(11):1449-1461.
    [18] CHEN W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier Scientific Publishing Company, 1975.
    [19] CHRISTIANSEN E. Limit analysis of collapse states [M]//CIARLLET P G, LIONS J L. Handbook of Numerical Analysis. North-Holland: Amsterdam. 1996: 193-312.
    [20] KRABBENHOFT K, LYAMIN A V, HJIAJ M,et al. A new discontinuous upper bound limit analysis formulation[J]. International Journal for Numerical Methods in Engineering, 2005,63(7):1069-1088.
    [21] DRUCKER D C, PRAGER W, GREENBERG H J. Extended limit design theorems for continuous media[J]. Quarterly of Applied Mathematics, 1952,9(4):381-389.
    [22] ZIENKIEWICZ O C, PANDE G N. Some useful forms of isotropic yield surface for soil and rock mechanics [M]//GUDEHUS G. In Finite Elements in Geomechanics. Chichester: Wiley. 1997: 179-190.
    [23] ABBO A J, SLOAN S W. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion[J]. Computers & Structures, 1995,54(3):427-441.
    [24] LYAMIN A V, SLOAN S W. Lower bound limit analysis using non-linear programming[J]. International Journal for Numerical Methods in Engineering, 2002,55(5):573-611.
    [25] SLOAN S W. Lower bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988,12(1):61-77.
    [26] SLOAN S W. Upper bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1989,13:263-282.
    [27] SLOAN S W, KLEEMAN P W. Upper bound limit analysis using discontinuous velocity-fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995,127(1/2/3/4):293-314.
    [28] 杨 峰,(阳军生),(张学民). 基于线性规划模型的极限分析上限有限元的实现[J]. (岩土力学), 2011,32(3):914-921. (YANG Feng, YANG Jun-sheng, ZHANG Xue-min. Implementation of finite element upper bound solution of limit analysis based on linear programming model[J]. Chinese Journal of Rock Mechanics and Engineering,2011,32(3): 914-921 (in Chinese)
    [29] SLOAN S W. Upper bound limit analysis using finite-elements and linear-programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1989,13(3):263-282.
    [30] KRABBENHOFT K, LYAMIN A V, SLOAN S W. Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming[J]. Communications in Numerical Method in Engineering, 2008,24(11):1107-1119
    [31] MAKRODIMOPOULOS A, MARTIN C M. Upper bound limit analysis using simplex strain elements and second-order cone programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007,31(6):835-865.
    [32] MAKRODIMOPOULOS A, MARTIN C M. Upper bound limit analysis using discontinuous quadratic displacement fields[J]. Communications in Numerical Methods in Engineering, 2008,24(11):911-927.
    [33] MARTIN C M, MAKRODIMOPOULOS A. Finite-element limit analysis of Mohr-Coulomb materials in 3D using semidefinite programming[J]. Journal of Engineering Mechanics, ASCE, 2008, 134(4):339-347.
    [34] MOSEK A. The MOSEK C API manual. Version 6.0[M]. (Revision 103) User00092;s Manual and Reference. http://www.mosek.com. 2010.
    [35] LABIT Y, PEAUCELLE D, HENRION D Sedumi. Interface 1. 02 - A tool for solving LMI problems with SEDUMI[C]// IEEE International Symposium on Computer Aided Control System Design Proceedings, 2002:272-277.
    [36] KELLY D W,GAGO J P D R, ZIENKIEWICZ O C,et al. A-posteriori error analysis and adaptive processes in the finite-element method 1 error analysis[J]. International Journal for Numerical Methods in Engineering, 1983,19(11):1593-1619.
    [37] ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a-posteriori error-estimates 1 the recovery technique[J]. International Journal for Numerical Methods in Engineering, 1992,33(7):1331-1364.
    [38] ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a-posteriori error-estimates 2 error-estimates and adaptivity[J]. International Journal for Numerical Methods in Engineering, 1992,33(7):1365-1382.
    [39] KAMMOUN Z, PASTOR F, SMAOUI H,et al. Large static problem in numerical limit analysis: A decomposition approach[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010,34(18):1960-1980.
    [40] PASTOR F, LOUTE, E, PASTOR J. Limit analysis and convex programming: A decomposition approach of the kinematic mixed method[J]. International Journal for Numerical Methods in Engineering, 2009,78:254-274.
计量
  • 文章访问数:  1008
  • HTML全文浏览量:  3
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-17
  • 发布日期:  2013-05-26

目录

    /

    返回文章
    返回