• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

泥水盾构泥膜形成时开挖面地层孔压变化规律研究

闵凡路, 朱伟, 魏代伟, 夏胜全

闵凡路, 朱伟, 魏代伟, 夏胜全. 泥水盾构泥膜形成时开挖面地层孔压变化规律研究[J]. 岩土工程学报, 2013, 35(4): 722-727.
引用本文: 闵凡路, 朱伟, 魏代伟, 夏胜全. 泥水盾构泥膜形成时开挖面地层孔压变化规律研究[J]. 岩土工程学报, 2013, 35(4): 722-727.
MIN Fan-lu, ZHU Wei, WEI Dai-wei, XIA Sheng-quan. Change of pore water pressure in soil as filter cakes formed on excavation face in slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 722-727.
Citation: MIN Fan-lu, ZHU Wei, WEI Dai-wei, XIA Sheng-quan. Change of pore water pressure in soil as filter cakes formed on excavation face in slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 722-727.

泥水盾构泥膜形成时开挖面地层孔压变化规律研究  English Version

基金项目: 国家重点基础研究发展计划(973计划)项目(2012CB719804);国家自然科学基金项目(50908075,50979028);江苏省重点基金项目(BK2011025)
详细信息
    作者简介:

    闵凡路(1985- ),男,山东滕州市人,博士研究生,主要从事泥水盾构开挖面稳定性控制及泥浆成膜等方面的研究。E-mail: minfanlu@126.com。

  • 中图分类号: TU411

Change of pore water pressure in soil as filter cakes formed on excavation face in slurry shield

  • 摘要: 为保证开挖面的稳定,泥水盾构泥水舱中的泥浆必须在开挖面上形成微透水的泥膜,将部分泥浆压力转化为有效应力,泥浆压力才能平衡地层中的土压力和水压力。目前关于泥膜形成时泥浆压力的转化规律及其影响因素尚不清楚。针对这一问题,在自制的泥浆渗透装置中,以12组不同性质的泥浆开展渗透试验,通过测定泥膜形成过程中地层超静孔隙水应力的变化,并分析影响其分布的因素,明确了泥膜的作用机理。结果表明:随着泥膜的形成,泥浆压力在地层中转化为抵抗地层静水压力的孔压、超静孔隙水应力和抵抗地层土压力的有效应力;超静孔隙水应力在泥膜段迅速降低,在地层深处逐渐趋于稳定;泥浆的密度是影响地层超静孔隙水压力分布规律的主要因素之一,泥浆黏度对其影响较小。这一结果对于泥浆压力的设定和泥浆的配制有重要的指导意义。
    Abstract: To ensure the stability of excavation face in slurry shield, a filter cake with low permeability must be formed on the working face. Based on the filter cake, part of the slurry pressure can transform into effective stress. Then the slurry pressure can counteract the soil pressure and water pressure in the soil. The variation of slurry pressure as forming a filter cake and its influencing factors are still unknown at present. With regard to the problem, a slurry infiltration apparatus is developed and a series of pressure filtration tests are carried out on 12 different slurries. By measuring the change of the excess pore water pressure as forming a filter cake and analyzing its influencing factors, the working mechanism of the filter cake is identified. The test results indicate that the slurry pressure is transformed into three different parts: pore pressure to counteract the water pressure, excess pore water pressure, and effective pressure to counteract the soil pressure. The excess pore water pressure rapidly decreases in the filter cake, then reaches a steady value in the deep zone of soil. The density of slurries is one of the primary factors that influence the distribution of the excess pore water pressure, while the viscosity has little effect on it. This study has an important directive significance for setting slurry pressure and adjusting slurry in slurry shield.
  • [1] WANG S H, HUANG G H, ZENG C. Research on construction technology for yangtze-river crossing tunnel project in wuhan[C]// Proceedings of the Pipelines 2007 International Conference, ASCE, Boston, 2007: 120.Research on construction technology for yangtze-river crossing tunnel project in wuhan[C]// Proceedings of the Pipelines 2007 International Conference, ASCE, Boston, 2007: 120.
    [2] LI Y, EMERIAULT F, KASTNER R,et al. Stability analysis of large slurry shield-driven tunnel in soft clay[J]. Tunnelling and Underground Space Technology, 2009,244:472-481.
    [3] 张凤祥,朱合华,傅德明. 盾构隧道[M]. 北京: 人民交通出版社, 2004.ZHANG Feng-xiang, ZHU He-hua, FU De-ming.
    Shield tunnel[M]. Beijing: China Communication Press, 2004. (in Chinese)
    [4] ANAGNOSTOU G, KOVARI K. The face stability of Slurry-shield-driven tunnel[J]. Tunneling and Underground Space Technology, 1994,92:165-174.
    [5] HARDING P G. High density slurry shield extends Japanese technology[J]. Tunnels and Tunnelling, 1982,14:55-56.
    [6] BROERE W. Tunnel face stability and new CPT applications[D]. Delft: Delft University of Technology, 2001.
    [7] KIM S H, TONON F. Face stability and required support pressure for TBM driven tunnels with ideal face membrane-drained case[J]. Tunnelling and Underground Space Technology, 2010,255:526-542.
    [8] WATANABE T, YAMAZAKI H. Giant size slurry shield is a success in Tokyo[J]. Tunnels and Tunnelling, 1981,13:13-17.
    [9] 程展林,吴忠明,徐言勇. 砂基中泥浆盾构法隧道施工开挖面稳定性试验研究[J]. 长江科学院院报, 2001,185:53-55. CHENG Zhan-lin, WU Zhong-ming, XU Yan-yong.
    Experimental study on stability of excavation face of slurry shield tunnel construction in sandy ground[J]. Journal of Yangtze River Scientific Research Institute, 2001, 185: 53-55. (in Chinese)
    [10] FRITZ P. Additives for slurry shields in highly permeable ground[J]. Rock Mechanics and Rock Engineering, 2007,401:81-95.
    [11] 韩晓瑞. 基于泥浆与地层匹配性的泥水盾构泥膜形成规律研究[D]. 南京: 河海大学, 2009.HAN Xiao-rui.
    Study on the filter-cake forming low of slurry shield based on the matching of slurry and the ground[D]. Nanjing: Hohai University, 2009. (in Chinese)
    [12] 韩晓瑞,朱 伟,刘泉维,等. 泥浆性质对泥水盾构开挖面泥膜形成质量影响[J]. 岩土力学, 2008,29增刊:288-292. HAN Xiao-rui, ZHU Wei, LIU Quan-wei, et al. Influence of slurry property on filter cake quality on working face of slurry shield[J]. Rock and Soil Mechanics, 2008, 29S0
    [13] MIN F L, ZHU W, HAN X R,et al. The effect of clay content on filter-cake formation in highly permeable gravel[C]// Proceedings of the 2010 GeoShanghai International Conference, ASCE, GSP204, Shanghai, 2010: 210-215.The effect of clay content on filter-cake formation in highly permeable gravel[C]// Proceedings of the 2010 GeoShanghai International Conference, ASCE, GSP204, Shanghai, 2010: 210-215.
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  15
  • PDF下载量:  857
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-08
  • 发布日期:  2013-04-17

目录

    /

    返回文章
    返回