• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

挥发性气体通过填埋场复合覆盖层的一维扩散解析解

关驰, 谢海建, 唐晓武, 陈云敏

关驰, 谢海建, 唐晓武, 陈云敏. 挥发性气体通过填埋场复合覆盖层的一维扩散解析解[J]. 岩土工程学报, 2013, 35(1): 124-130.
引用本文: 关驰, 谢海建, 唐晓武, 陈云敏. 挥发性气体通过填埋场复合覆盖层的一维扩散解析解[J]. 岩土工程学报, 2013, 35(1): 124-130.
Guan Chi, Xie Hai-jian, Tang Xiao-wu, Chen Yun-min. Analytical solution to one-dimensional diffusion of volatile gases through landfill composite covers[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 124-130.
Citation: Guan Chi, Xie Hai-jian, Tang Xiao-wu, Chen Yun-min. Analytical solution to one-dimensional diffusion of volatile gases through landfill composite covers[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 124-130.

挥发性气体通过填埋场复合覆盖层的一维扩散解析解  English Version

基金项目: 国家重点基础研究发展计划项目(2012CB719800);国家自然科学基金项目(51008274;51278452;51010008);浙江省公益性技术应用研究计划项目(2011C21061)
详细信息
    作者简介:

    关 驰(1985- ),女,黑龙江双鸭山人,博士研究生,主要从事多孔介质多相流方面的研究。E-mail: xiehaijian@zju.edu.cn。

  • 中图分类号: TU43

Analytical solution to one-dimensional diffusion of volatile gases through landfill composite covers

  • 摘要: 为了评价填埋场覆盖层对挥发性气体的防渗性能,建立了挥发性气体在复合覆盖层中的扩散运移模型并采用分离变量法获得了模型解析解。解析解的计算结果与数值解结果吻合得较好。分析结果表明,对于土工膜/土工复合膨润土垫(GM/GCL)与土工膜/压实黏土(GM/CCL)组成的覆盖层,覆盖层顶部气体扩散达到稳态的时间比较接近,约为1.6 a;对于压实黏土(CCL)系统达到稳定状态的时间为0.5 a;稳态时通量依次为6.0×105,1.0×106和7.4×105 mg/ha/a。在这3个覆盖层系统中,GM/CCL对气体扩散的控制性能最差。对于GM/GCL,GCL含水饱和度从0.85增加到1时,覆盖层顶部通量减小了82.5%。饱和时GM/GCL系统顶部气体达到稳态的时间是非饱和情况下的约100倍。对于GM/CCL,CCL含水饱和度从0.1增加到0.85时,覆盖层顶部通量减小了近1个数量级。含水饱和度的变化可导致覆盖层顶部挥发性气体稳态时通量发生数量级的变化。
    Abstract: In order to assess the effectiveness of landfill cover systems in prohibiting the emission of volatile gases, an analytical solution is developed using the method of separation of variables on the basis of the proposed gas diffusion model. The present analytical solution is found to be in good agreement with the numerical results. For the cover systems of geomembrane/geotechnical bentonite (GM/GCL) and geomembrane/compacted clay (GM/CCL), the time for the gas flux at the top of cover systems to reach the steady state is approximately 1.6 years; and for the compacted clay (CCL), the time is only 6 months. The corresponding gas fluxes at the top of the cover systems of GM/GCL, GM/CCL and CCL are 6.0×105, 1.0×106 and 7.4×105 mg/ha/a, respectively. The composite cover system with a CCL has the largest diffusion gas flux among the three cover systems. For GM/GCL, when the degree of water saturation increases from 0.85 to 1, the gas flux at the top of the cover system decreases by 82.5%, and the time for the gas flux at the top of the system to reach the steady state for saturated cases is 100 times longer than the time for the test of unsaturated cases. For GM/CCL, the flux through the top of GM/CCL decreases by about an order of magnitude when the water saturation degree of CCL increases from 0.1 to 0.85. The variation of degree of water saturation may result in a change in the volatile gas flux at top of the cover systems by about an order of magnitude.
  • [1] AUBERTIN M, AACHIB M, AUTHIER K. Evaluation of diffusive gas flux through covers with a GCL[J]. Geotextiles and Geomembranes, 2000, 18(2/3/4): 215–233.
    [2] BARRAL C, OXARANGO L, PIERSON P. Characterizing the gas permeability of natural and synthetic materials[J]. Transport in Porous Media, 2010, 81(2): 277–293.
    [3] MOON S, NAM K, KIM J Y, et al. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system[J]. Waste Management, 2008, 28(10): 1909–1914.
    [4] KIM H. Oxygen transport through multi-layer caps over mine waste[D]. Madison: University of Wisconsin, 2000.
    [5] MCWATTERS R S, ROWE R K. Diffusive transport of VOCs through LLDPE and two coextruded geomembranes[J]. Journal of Geotechnical and Geoenvironmental, 2010, 136(9): 1167–1177.
    [6] TASSI F, MONTEGROSSI G, VASELLI O, et al. Flux measurements of benzene and toluene from landfill cover soils[J]. Waste Management & Research, 2011, 29(1): 50–58.
    [7] DONOVAN S M, PAN J L, BATESON T, et al. Gas emissions from biodegradable waste in United Kingdom landfills[J]. Waste Management & Research, 2011, 29(1): 69–76.
    [8] ZHANG H H, HE P J, SHAO L M, et al. Minimizing N2O fluxes from full-scale municipal solid waste landfill with properly selected cover soil[J]. Journal of Environmental Sciences, 2008, 20(2): 189–194.
    [9] SCHEUTZ C, MOSBAEK H, KJELDSEN P. Attenuation of methane and volatile organic compounds in landfill soil covers[J]. Journal of Environmental Quality, 2004, 33(1): 61–71.
    [10] GENG F H, CAI C J, TIE X X, et al. Analysis of VOC emissions using PCA/APCS receptor model at city of Shanghai, China[J]. Journal of Atmospheric Chemistry, 2009, 62(3): 229–247.
    [11] LIN J S, HILDEMANN L M. A nonsteady-state analytical model to predict gaseous emissions of volatile organic-compounds from landfills[J]. Journal of Hazardous Materials, 1995, 40(3): 271–295.
    [12] CHALVATZAKI E, LAZARIDIS M. Assessment of air pollutant emissions from the Akrotiri landfill site (Chania, Greece)[J]. Waste Management & Research, 2010, 28(9): 778–788.
    [13] POULSEN T G., CHRISTOPHERSEN M, MOLDRUP P, et al. Modeling lateral gas transport in soil adjacent to old landfill[J]. Journal of Environmental Engineering, 2001, 127(2): 145–153.
    [14] POKHREL D, HETTIARATCHI P, KUMAR S. Methane diffusion coefficient in compost and soil-compost mixtures in gas phase biofilter[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 200–206.
    [15] ROWE R K, NADARAJAH P. An analytical method for predicting the velocity field beneath landfills[J]. Canadian Geotechnical Journal, 1997, 34(2): 264–282.
    [16] 谢海建, 柯 瀚, 陈云敏. 浓度变化时复合衬层中有机污染物的一维扩散分析[J]. 环境科学学报, 2006, 26(6): 930–935. (XIE Hai-jian, KE Han, CHEN Yun-min. Analysis of one-dimensional organic contaminants diffusion through composite liner under time-dependent concentration conditions[J]. Acta Scientiae Circumstantiae, 2006, 26(6): 930–935. (in Chinese))
    [17] 杨文参, 谢海建, 陈培雄, 等. 考虑降解时污染物在底泥及覆盖层中的运移解[J]. 土木工程学报, 2011, 44(增刊2): 181–185. (YANG Wen-can, XIE Hai-jian, CHEN Pei-xiong, et al. Analytical solution for contaminant transport through underwater soil and overlying cap layer considering degradation[J]. China Civil Engineering Journal, 2011, 44(S2): 181–185. (in Chinese))
    [18] 陈云敏, 谢海建, 柯 瀚, 等. 挥发性有机化合物在复合衬里中的一维扩散解[J]. 岩土工程学报, 2006, 28(9): 1076–1080. (CHEN Yun-min, XIE Hai-jian, KE Han, et al. Analytical solution of one-dimensional diffusion of volatile organic compounds (VOCs) through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1076–1080. (in Chinese))
    [19] 陈云敏, 谢海建, 柯 瀚, 等. 层状土中污染物的一维扩散解析解[J]. 岩土工程学报, 2006, 28(4): 521–524. (CHEN Yun-min, XIE Hai-jian, KE Han, et al. Analytical solution of contaminant diffusion through multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 521–524. (in Chinese))
    [20] HIGASHIHARA T, SHIBUYA H, SATO S, et al. Activation energy for diffusion of helium in water-saturated, compacted Na-montmorillonite[J]. Engineering Geology, 2005, 81(3): 365–370.
    [21] MOLINS S, MAYER K U, AMOS R T, et al. Vadose zone attenuation of organic compounds at a crude oil spill site - Interactions between biogeochemical reactions and multicomponent gas transport[J]. Journal of Contaminant Hydrology, 2010, 112(1/2/3/4): 15–29.
    [22] XIE K H, XIE X Y, GAO X. Theory of one dimensional consolidation of two-layered soil with partially drained boundaries[J]. Computers and Geotechnics, 1999, 24(4): 265–278.
    [23] ROWE R K, QUIGLEY R M, BRACHMAN R W L, et al. Barrier systems for waste disposal[M]. London and New York: Spon Press, 2004.
    [24] CJJ 112—2007 生活垃圾卫生填埋场封场技术规范[S]. 北京: 中国建筑工业出版社, 2007. (CJJ 112—2007 Technical code for municipal solid waste sanitary landfill closure[S]. Beijing: China Architecture & Building Press, 2007. (in Chinese))
    [25] SHELP M L, YANFUL E K. Oxygen diffusion coefficient of soils at high degrees of saturation[J]. Geotechnical Testing Journal, 2000, 23(1): 36–44.
    [26] KIM H, BENSON C H. Contributions of advective and diffusive oxygen transport through multilayer composite caps over mine waste[J]. Journal of Contaminant Hydrology, 2004, 71(1/2/3/4): 193–218.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-02
  • 发布日期:  2013-01-31

目录

    /

    返回文章
    返回