• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

重塑黏土次固结性状的变化规律与定量评价

曾玲玲, 洪振舜, 刘松玉, 陈福全

曾玲玲, 洪振舜, 刘松玉, 陈福全. 重塑黏土次固结性状的变化规律与定量评价[J]. 岩土工程学报, 2012, 34(8): 1496-1500.
引用本文: 曾玲玲, 洪振舜, 刘松玉, 陈福全. 重塑黏土次固结性状的变化规律与定量评价[J]. 岩土工程学报, 2012, 34(8): 1496-1500.
ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu, CHEN Fu-quan. Variation law and quantitative evaluation of secondary consolidation behavior for remolded clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1496-1500.
Citation: ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu, CHEN Fu-quan. Variation law and quantitative evaluation of secondary consolidation behavior for remolded clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1496-1500.

重塑黏土次固结性状的变化规律与定量评价  English Version

基金项目: 国家自然科学基金项目(41102168,41172240)
详细信息
    作者简介:

    曾玲玲(1983– ),女,讲师,博士,从事土的基本特性与本构关系及地基处理方面研究。

  • 中图分类号: TU411

Variation law and quantitative evaluation of secondary consolidation behavior for remolded clays

  • 摘要: 通过对6种不同的天然沉积土重塑样进行一维压缩次固结试验,明确了重塑黏土次固结变形的主要影响因素为孔隙比与对应于液限的孔隙比,得出了重塑黏土的次固结系数随着固结压力的增大和孔隙比的减小而减小,且相同孔隙比下次固结系数随液限的增大而增大的规律。定义了ln(1+e)-lnt双对数坐标下的次固结系数CαL,提出了双对数坐标次固结系数与液限孔隙比的定量关系表达式,为重塑黏土提供了简便实用的次固结变形计算方法,也为进一步完善Burland等提出的固有压缩概念与压缩理论奠定试验基础。
    Abstract: Oedometer and secondary consolidation tests were performed on six remolded clays with a wide spectrum of liquid limits to investigate the secondary consolidation behavior. It is understood that the void ratio and the void ratio at liquid limit are the controlling factors in the secondary deformation analysis. This study also makes it clear that the coefficient of the secondary consolidation decreases with the decrease in the void ratio, and increases with the increase in the liquid limit under the same void ratio. A new definition of the coefficient of secondary consolidation is given in the bilogarithmic ln(1+e)-logt plot. The quantitative evaluation of the relationship between the secondary consolidation coefficient in the bilogarithmic plot and the void ratio at the liquid limit (eL) is also proposed. A simple method for predicting the settlement of the secondary consolidation for remolded clays is also recommended.
  • [1] LEROUEIL S, TAVENAS F, BRUCY F, et al. Behavior of destructured natural clays[J]. Journal of the Geotechnical Engineering Division, 1979, 105(6): 759–778.
    [2] BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378.
    [3] HIGHT D W, BOND A J, LEGGE J D. Characterization of the Bothkennar clay: an overview[J]. Géotechnique, 1992, 42(2): 303–347.
    [4] HONG Z S, HAN J. Evaluation of sample quality of sensitive clay using intrinsic compression concept[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE. 2007, 133(1): 83–90.
    [5] HONG Z S, YIN J, CUI Y J. Compression behaviour of reconstituted soils at high initial water contents[J]. Géotechnique, 2010: 60(4): 691–700.
    [6] BJERRUM L. Engineering geology of normally consolidated marine clays as related to the settlement of buildings[J]. Géotechnique, 1967, 17(2): 83–118.
    [7] YIN J H, GRAHAM J. Viscous–elastic–plastic modeling of one-dimensional time-dependent behaviour of clay[J]. Canadian Geotechnical Journal, 1989, 26(1): 199–209.
    [8] 殷宗泽, 张海波, 朱俊高, 等. 软土的次固结[J]. 岩土工程学报, 2003, 25(5): 521–526. (YIN Zong-ze, ZHANG Hai-bo, ZHU Jun-gao, et al. Secondary consolidation of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 521–526. (in Chinese))
    [9] MESRI G, GODLEWSKI P M. Time and stress- compressibility interrelationship[J]. Journal of Geotechnical Engineering Division, ASCE, 1977, 103(5): 417–430.
    [10] MESRI G, STARK T D, AJLOUNI M A, et al. Secondary compression of peat with or without surcharging[J]. Geotechnical Engineering, ASCE, 1997, 123(5): 411–421.
    [11] MESRI G, VARDHANABHUTI B. Secondary compression[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(3): 398–401.
    [12] BUTTERFIELD R. A natural compression law for soils[J]. Géotechnique, 1979, 29(4): 469–480.
    [13] ONITSUKA K, HONG Z S, HARA, et al. Interpretation of oedometer test data for natural clays[J]. Soils and Foundations, 1995, 35(3): 61–70.
    [14] ZENG L L, LIU S Y. A calculation method of secondary compression index for natrual sedimentary clays using void index[C]// Geo-Shanghai International Conference. Shanghai, 2010: 14–21.
    [15] 洪振舜, 刘志方, 郭海轮, 等. 天然沉积饱和有明粘性土的Burland孔隙指数与归一化含水率的关系[J]. 岩土力学, 2004, 25(11): 1698–1701. (HONG Zhen-shun, LIU Zhi-fang, GUO Hai-lun, et al. Relationship between void index and normalized water content for natural sedimentary Ariake clays[J]. Rock and Soil Mechanics, 2004, 25(11): 1698–1701. (in Chinese))
    [16] 曾玲玲, 刘松玉, 洪振舜, 等. 天然沉积结构性土的次固结变形机理分析[J]. 岩土工程学报, 2010, 32(7): 1042–1046. (ZENG Ling-ling, LIU Song-yu, HONG Zhen-shun, et al. Analysis of secondary consolidation deformation mechanism of natural clays[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1042–1046. (in Chinese))
    [17] JTG E40—2007公路土工试验规程[S]. 2007. (JTG E40—2007 Test methods of soils for highway engineering[S]. 2007. (in Chinese))
    [18] ZENG L L, HONG Z S, CAI Y Q, et al. Change of hydraulic conductivity during compression of undisturbed and remolded clays[J]. Applied Clay Science, 2011, 51(1/2): 86–93.
    [19] IMAI G, TANAKA Y, SAEGISA H. One-dimensional consolidation modeling based on the isotach law for normally consolidated clays[J]. Soils and Foundations, 2003, 43(4): 173–188.
    [20] NAGARAJ T S, PANDIAN N S, NARASIMAHA RAJU P S R. Stress state-permeability relationships for fine- grained soils[J]. Géotechnique, 1993, 43(2): 333–336.
    [21] HONG Z S, LIU S Y. NEGAMI T. Strength sensitivity of marine Ariake clays[J]. Marine Georesources and Geotechnology, 2005, 23(3): 221–233.
    [22] SCHMERTMANN J H. The mechanical aging of soils[J]. Journal of the Geotechnical Engineering Division, ASCE, 1991, 117(9): 1288–1330.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-10
  • 发布日期:  2012-08-19

目录

    /

    返回文章
    返回