[1] |
LEROUEIL S, TAVENAS F, BRUCY F, et al. Behavior of destructured natural clays[J]. Journal of the Geotechnical Engineering Division, 1979, 105(6): 759–778.
|
[2] |
BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378.
|
[3] |
HIGHT D W, BOND A J, LEGGE J D. Characterization of the Bothkennar clay: an overview[J]. Géotechnique, 1992, 42(2): 303–347.
|
[4] |
HONG Z S, HAN J. Evaluation of sample quality of sensitive clay using intrinsic compression concept[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE. 2007, 133(1): 83–90.
|
[5] |
HONG Z S, YIN J, CUI Y J. Compression behaviour of reconstituted soils at high initial water contents[J]. Géotechnique, 2010: 60(4): 691–700.
|
[6] |
BJERRUM L. Engineering geology of normally consolidated marine clays as related to the settlement of buildings[J]. Géotechnique, 1967, 17(2): 83–118.
|
[7] |
YIN J H, GRAHAM J. Viscous–elastic–plastic modeling of one-dimensional time-dependent behaviour of clay[J]. Canadian Geotechnical Journal, 1989, 26(1): 199–209.
|
[8] |
殷宗泽, 张海波, 朱俊高, 等. 软土的次固结[J]. 岩土工程学报, 2003, 25(5): 521–526. (YIN Zong-ze, ZHANG Hai-bo, ZHU Jun-gao, et al. Secondary consolidation of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 521–526. (in Chinese))
|
[9] |
MESRI G, GODLEWSKI P M. Time and stress- compressibility interrelationship[J]. Journal of Geotechnical Engineering Division, ASCE, 1977, 103(5): 417–430.
|
[10] |
MESRI G, STARK T D, AJLOUNI M A, et al. Secondary compression of peat with or without surcharging[J]. Geotechnical Engineering, ASCE, 1997, 123(5): 411–421.
|
[11] |
MESRI G, VARDHANABHUTI B. Secondary compression[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(3): 398–401.
|
[12] |
BUTTERFIELD R. A natural compression law for soils[J]. Géotechnique, 1979, 29(4): 469–480.
|
[13] |
ONITSUKA K, HONG Z S, HARA, et al. Interpretation of oedometer test data for natural clays[J]. Soils and Foundations, 1995, 35(3): 61–70.
|
[14] |
ZENG L L, LIU S Y. A calculation method of secondary compression index for natrual sedimentary clays using void index[C]// Geo-Shanghai International Conference. Shanghai, 2010: 14–21.
|
[15] |
洪振舜, 刘志方, 郭海轮, 等. 天然沉积饱和有明粘性土的Burland孔隙指数与归一化含水率的关系[J]. 岩土力学, 2004, 25(11): 1698–1701. (HONG Zhen-shun, LIU Zhi-fang, GUO Hai-lun, et al. Relationship between void index and normalized water content for natural sedimentary Ariake clays[J]. Rock and Soil Mechanics, 2004, 25(11): 1698–1701. (in Chinese))
|
[16] |
曾玲玲, 刘松玉, 洪振舜, 等. 天然沉积结构性土的次固结变形机理分析[J]. 岩土工程学报, 2010, 32(7): 1042–1046. (ZENG Ling-ling, LIU Song-yu, HONG Zhen-shun, et al. Analysis of secondary consolidation deformation mechanism of natural clays[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1042–1046. (in Chinese))
|
[17] |
JTG E40—2007公路土工试验规程[S]. 2007. (JTG E40—2007 Test methods of soils for highway engineering[S]. 2007. (in Chinese))
|
[18] |
ZENG L L, HONG Z S, CAI Y Q, et al. Change of hydraulic conductivity during compression of undisturbed and remolded clays[J]. Applied Clay Science, 2011, 51(1/2): 86–93.
|
[19] |
IMAI G, TANAKA Y, SAEGISA H. One-dimensional consolidation modeling based on the isotach law for normally consolidated clays[J]. Soils and Foundations, 2003, 43(4): 173–188.
|
[20] |
NAGARAJ T S, PANDIAN N S, NARASIMAHA RAJU P S R. Stress state-permeability relationships for fine- grained soils[J]. Géotechnique, 1993, 43(2): 333–336.
|
[21] |
HONG Z S, LIU S Y. NEGAMI T. Strength sensitivity of marine Ariake clays[J]. Marine Georesources and Geotechnology, 2005, 23(3): 221–233.
|
[22] |
SCHMERTMANN J H. The mechanical aging of soils[J]. Journal of the Geotechnical Engineering Division, ASCE, 1991, 117(9): 1288–1330.
|