• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土壤热导率的温度效应试验和预测研究

刘晨晖, 周 东, 吴 恒

刘晨晖, 周 东, 吴 恒. 土壤热导率的温度效应试验和预测研究[J]. 岩土工程学报, 2011, 33(12): 1877-1886.
引用本文: 刘晨晖, 周 东, 吴 恒. 土壤热导率的温度效应试验和预测研究[J]. 岩土工程学报, 2011, 33(12): 1877-1886.
LIU Chen-hui, ZHOU Dong, WU Heng. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1877-1886.
Citation: LIU Chen-hui, ZHOU Dong, WU Heng. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1877-1886.

土壤热导率的温度效应试验和预测研究  English Version

基金项目: 国家自然科学基金项目 ( 40772190 ) ;广西自然科学基金项目 ( 0832026 )
详细信息
    作者简介:

    刘晨晖 (1986 – ) ,男,江西赣州人,博士研究生,从事环境岩土工程研究。

  • 中图分类号: TU43

Measurement and prediction of temperature effects of thermal conductivity of soils

  • 摘要: 目前国际上对于高温下土壤的完整热导率数据极其缺乏,通过 KD2 Pro 测试了粉砂质黏壤土和细砂在较宽广温度 (5 ℃~ 88 ℃ ) 和含水率范围内的热导率。测试结果表明,由于水蒸气的凝结和蒸发产生的潜热传输效应,在 88 ℃下热导率最高可达 5 ℃时的 3 ~ 4 倍,热导率随含水率的变化存在明显的临界含水率 ( 依赖于颗粒组成 ) 。对基于 de Vries 假设的 de V-1 和 Campbell 理论模型的验证和对比表明,参考文献中的一些参数及其获取方法的适用性需要改进,修正后的模型基本能较好地预测不同温度下热导率的变化 (RMSE < 30%) ,且 温度越接近 40 ℃误差越小,粉砂质黏壤土在高温下 (58 ℃~ 88 ℃ ) 的 θ AWC θ PWP 区间建议乘以传质增强因子(=2.5)。模型均较为复杂,有待于在此基础上进一步建立易用的经验性模型。
    Abstract: Currently, there is an extreme deficiency of complete data of thermal conductivity of soils under high temperature around the world, tests are thus conducted through KD2 Pro on the silty clay loam and fine sand within a wide range of temperatures (5 ℃~ 88 ℃ ) and water contents. The results indicate that the thermal conductivity under 88 ℃ is 3 or 4 times as high as that under 5 ℃ due to the latent heat transfer effect caused by condensation and evaporation of vapor. The critical water content, which depends on texture, exists as thermal conductivity changes with the water content. According to the verification and comparison of de V-1 and Campbell theoretical models from de Vries’s hypothesis, improvements are needed on some parameters and the applicability of achieving them in the references. However, the modified models can comparatively better predict the change of the thermal conductivity under different temperatures (RMSE < 30%). The closer to 40 ℃ , the lower the error. It is suggested that a mass transfer enhancement factor of 2.5 should be multiplied under 58 ℃~ 88 ℃ within θAWC ~ θ PWP for silty clay loam. Judged by the complexity of these two models, the more convenient empirical models are expected to be established based on this foundation.
  • [1] KERSTEN M S. Thermal properties of soils[M]. Ann Arbor: University of Minnesota, 1949.
    [2] JOHANSEN O. Thermal conductivity of soils[D]. Norway: Trondheim, Cold Regions Research and Engineering Laboratory Draft Translation 637, 1977, ADA 044002.
    [3] CAMPBELL G S. Soil physics with BASIC transport models for soil-plant systems[M]. New York: Elsevier, 1985.
    [4] FAROUKI O T. Thermal Properties of Soils[M]. Series on Rock and Soil Mechanics. Germany: Trans Tech Publications, 1986.
    [5] GEO-SLOPE International Ltd. TEMP/W user’s guide for finite element geothermal analysis[M]. Canada: GEO-SLOPE International Ltd, 2002.
    [6] DE VRIES D A. Thermal properties of soils[M]. In Physics of plant environment. Amsterdam: W R North-Holland Publishing Company, 1963.
    [7] HADAS A. Evaluation of theoretically predicted thermal conductivities under field and laboratory conditions[J]. Soil Science Society of American Journal, 1977, 41 : 460 – 466.
    [8] CAMPBELL G S, JUNGBAUER J D, BIDLAKE W R, et al. Predicting the effect of temperature on soil thermal conductivity[J]. Soil Science, 1994, 158 (5): 307 – 313.
    [9] TARNAWSKI V R, GORI F, WAGNER B, et al. Modelling approaches to predicting thermal conductivity of soils at high temperatures[J]. International Journal of Energy Research, 2000a, 24 : 403 – 423.
    [10] TARNAWSKI V R, LEONG W H, BRISTOW K L. Developing a temperature-dependent Kersten function for soil thermal conductivity[J]. International Journal of Energy Research, 2000b, 24 : 1335 – 1350.
    [11] GORI F, CORASANITI S. Theoretical prediction of the soil thermal conductivity at moderately high temperatures[J]. Journal of Heat Transfer, 2002, 124 : 1001 – 1008.
    [12] TARNAWSKI V R, GORI F. Enhancement of the cubic cell soil thermal conductivity model[J]. International Journal of Energy Research, 2002, 26 : 143 – 157.
    [13] PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions of the American Geophysical Union, 1957, 38 : 222 – 232.
    [14] SEPASKHAH A R, BOERSMA L. Thermal conductivity of soils as a function of temperature and moisture content[J]. Soil Science Society American Journal, 1979, 43 : 439 – 444.
    [15] CASS A, CAMPBELL G S, JONES T L. Enhancement of thermal water vapor diffusion in soil[J]. Soil Science Society of America Journal, 1984, 48 : 25 – 32.
    [16] ANDRASKI B J, JACOBSON E A. Testing a full-range soil-water retention function in modelling water potential and temperature[J]. Water Resources Research, 2000, 36 (10): 3081 – 3089.
    [17] HIRAIWA Y, KASUBUCHI T. Temperature dependence of thermal conductivity of soils over a wide range of temperature (5-75 ℃ ) [J]. European Journal of Soil Science, 2000, 51 : 211 – 218.
    [18] 张延军 , 于子望 , 黄 芮 . 岩土热导率测量和温度影响研究 [J]. 岩土工程学报 , 2009, 31 (2): 213 – 217. (ZHANG Yan-jun, YU Zi-wang, HUANG Rui. Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (2): 213 – 217. (in Chinese))
    [19] 陆 森 , 任图生 . 不同温度下的土壤热导率模拟 [J]. 农业工程学报 , 2009, 25 (7): 13 – 18. (LU Sen, REN Tu-sheng. Model for predicting soil thermal conductivity at various temperatures[J]. Chinese Journal of Transactions of the CSAE, 2009, 25 (7): 13 – 18. (in Chinese))
    [20] LU S, REN T, GONG Y, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71 (1): 8 – 14.
    [21] BRISTOW K L, KLUITENBERG G J, HORTON R. Measurement of soil thermal properties with a dual-probe heat-pulse technique[J]. Soil Science Society of America Journal, 1994, 58 : 1288 – 1294.
    [22] BRISTOW K L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes[J]. Agric For Meteorol, 1998, 89 : 75 – 84.
    [23] ABU – HAMDEH N H. Measurement of the thermal conductivity of sandy loam and clay loam soils using single and dual probes[J]. J Agric Engng Res, 2001, 80 (2): 209 – 216.
    [24] MCINNES K. Thermal conductivities of soils from dryland wheat regions in Easter Washington[D]. Pullman: Washington State University, 1981.
    [25] CARY J W. Soil heat transducers and water vapor flow[J]. Soil Science Society of America Journal, 1979, 43 : 835 – 839.
    [26] HORAI K. Thermal conductivity of rock-forming minerals[J]. Geophys, Res, 1971, 76 : 1278 – 1308.
    [27] CHRISTOPH CLAUSER, ERNST HUENGES, Thermal conductivity of rocks and minerals[C]// Rock Physics and Phase Relations. a Handbook of Physical Constants, 1995, 3 : 105 – 126. Ed. T. Ahrens, AGU.
    [28] SASS J H, LACHENBRUCH A H, MUNROE R J. Thermal conductivity of rocks from measurements on fragments and its application to heat flow determinations[J]. J Geophys Res, 1971, 76 : 3391 – 3401.
    [29] BOUGUERRA A, LAURENT J P, GOUAL M S, et al. The measurement of the thermal conductivity of solid aggregates using the transient plane source technique[J]. Journal of Physics, 1997, 30 : 2900 – 2904.
    [30] RAWLS W J, BRAKENSIEK D L, SAXTON K E. Estimation of soil water properties[J]. Transactions of ASAE, 1982, 25 : 1316 – 1320, 1328.
    [31] VAN GENUCHTEN M TH, LEIJ F J, YATES SR. The RETC code for quantifying the hydraulic functions of unsaturated soils[R]. Califormia: U S Salinity Laboratory, 1991.
    [32] VAN GENUCHTEN M TH. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44 : 892 – 898.
    [33] TARNAWSKI V R, LEONG W H. Thermal conductivity of soils at very low moisture content and moderate temperatures[J]. Transport in Porous Media, 2000, 41 (2): 137 – 147.
    [34] Decagon Devices, Inc. KD2 Pro thermal properties analyzer operator’s manual version 4[M]. Pullman: Decagon Devices. Inc, 2006.
    [35] SHIOZAWA S, CAMPBELL G S. On the calculation of mean particle diameter and standard deviation from sand, silt and clay fractions[J]. Soil Science, 1991, 152 (6): 427 – 431.
计量
  • 文章访问数:  1945
  • HTML全文浏览量:  15
  • PDF下载量:  1204
  • 被引次数: 0
出版历程
  • 发布日期:  2011-12-14

目录

    /

    返回文章
    返回