• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

一个考虑颗粒破碎的堆石料弹塑性本构模型

陈生水, 傅中志, 韩华强, 彭成

陈生水, 傅中志, 韩华强, 彭成. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489-1495.
引用本文: 陈生水, 傅中志, 韩华强, 彭成. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489-1495.
CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, PENG Cheng. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495.
Citation: CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, PENG Cheng. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495.

一个考虑颗粒破碎的堆石料弹塑性本构模型  English Version

基金项目: 国家自然科学基金项目(90815024);国家重点基础研究发展规划项目(2007CB714103);水利行业公益性专项经费项目(201001034,200801014);“十一五”国家科技支撑计划专题项目(2009BK56B02)
详细信息
    作者简介:

    陈生水 (1962 – ) ,男,江苏高淳人,博士,教授级高级工程师,博士生导师,主要从事岩土与土石坝工程方面的科学研究与技术咨询工作。

  • 中图分类号: TU47

An elastoplastic model for rockfill materials considering particle breakage

  • 摘要: 基于广义塑性理论建立了一个考虑堆石料颗粒破碎的弹塑性本构模型。模型采用随平均应力增加而减小的峰值摩擦角和特征点摩擦角来反映堆石料因颗粒破碎而表现出的峰值应力比与剪胀应力比的非线性,在此基础上确定塑性流动和加载方向向量;运用指数型压缩函数建立依赖于体积应变和平均应力的压缩参数 λ ,并构造随平均应力与剪应力水平而变化的塑性模量表达式。模型共有 8 个参数,均可通过等向或单向压缩和三轴压缩试验确定。为验证本文模型的合理性,依据试验资料确定了 3 种不同堆石料的本构模型参数,并对典型三轴压缩试验进行了模拟。 3 种材料的模型预测结果与试验数据均吻合良好,表明本文模型可合理反映了颗粒破碎对堆石料强度与变形特性的影响。
    Abstract: An elastoplastic constitutive model considering the particle breakage is proposed for rockfill materials within the framework of generalized plasticity. In the model, both the peak friction angle and the characteristic friction angle decrease with the increase of the mean stress so that the nonlinear dependence of the peak stress ratio and the dilatancy stress ratio on the mean stress is captured. The plastic flow direction and the loading direction are then formulated using the above characteristic stress ratios. Another feature of the model is the adoption of the exponential compression equation, based on which the representation of a volumetric strain-dependent and pressure-dependent compression index λ is established so as to formulate the plastic modulus, which is a function of the mean stress and the shear stress level. There are totally 8 parameters in the model, all of which can be determined by isotropic, oedometric and triaxial compression tests. To check the validity of the model, the parameters of three rockfill materials are calibrated based on the experimental data, and the typical triaxial compression tests are modelled. Satisfactory agreement between the numerical and experimental results confirms the capability of the proposed model in capturing the influences of the particle breakage on the strength and deformation behaviour of rockfill materials.
  • [1] 程展林 , 丁红顺 , 吴良平 . 粗粒土试验研究 [J]. 岩土工程学报 , 2007, 29 (8): 1151 – 1158. (CHENG Zhan-lin, DING Hong-shun, WU Liang-ping. Experimental study on mechanical behaviour of granular material[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (8): 1151 – 1158. (in Chinese))
    [2] 刘汉龙 , 秦红玉 , 高玉峰 , 等 . 堆石粗粒料颗粒破碎试验研究 [J]. 岩土力学 , 2005, 26 (4): 562 – 566. (LIU Han-long, QIN Hong-yu, GAO Yu-feng, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26 (4): 562 – 566. (in Chinese))
    [3] OLDECOP L A, ALONSO E E. A model for rockfill compressibility[J]. Géotechnique, 2001, 51 (2): 127 – 139.
    [4] OLDECOP L A, ALONSO E E. Theoretical investigation of the time-dependent behaviour of rockfill[J]. Géotechnique, 2007, 57 (3): 289 – 301.
    [5] 陈生水 , 韩华强 , 傅 华 . 循环荷载作用下堆石料应力变形特性研究 [J]. 岩土工程学报 , 2010, 32 (8): 1151 – 1157. (CHEN Sheng-shui, HAN Hua-qiang, FU Hua. Stress and deformation behaviors of rockfill under cyclic loadings [J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (8): 1151 – 1157. (in Chinese))
    [6] ALONSO E E, CARDOSO R. Behaviour of materials for earth and rockfill dams: perspective from unsaturated soil mechanics[J]. Frontier of Architecture and Civil Engineering in China, 2010, 4 (1): 1 – 39.
    [7] YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48 (4): 603 – 608.
    [8] 孙海忠 , 黄茂松 . 考虑颗粒破碎的粗粒土临界状态弹塑性本构模型 [J]. 岩土工程学报 , 2010, 32 (8): 1284 – 1290. (SUN Hai-zhong, HUANG Mao-song. Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (8): 1284 – 1290. (in Chinese))
    [9] SALIM W, INDRARATNA B. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage[J]. Canadian Geotechnical Journal, 2004, 41 : 657 – 671.
    [10] DESIMONE A, TAMAGNINI C. Stress-dilatancy based modelling of granular materials and extensions to soils with crushable grains[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29 : 73 – 101.
    [11] RUSSELL A R, KHALILI N. A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41 : 1179 – 1192.
    [12] ZIENKIEWICZ O C. Generalized plasticity and some models for geomechanics[J]. Applied Mathematics and Mechanics, 1982, 3 (3): 303 – 318.
    [13] ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational geomechanics with special reference to earthquake engineering[M]. New York: John Wiley & Sons, 1999.
    [14] LING H I, YANG S T. Unified sand model based on the critical state and generalized plasticity[J]. Journal of Engineering Mechanics, 2006, 132 (2): 1380 – 1391.
    [15] LING H I, LIU H B. Pressure-level dependency and densification behaviour of sand through generalized plasticity model[J]. Journal of Engineering Mechanics, 2003, 129 (8): 851 – 860.
    [16] NAKATA Y, KATO Y, HYODO M, et al. One dimensional compression behavior of uniformly graded sand related to single particle crushing strength[J]. Soils and Foundations, 2001, 41 (2): 39 – 51.
    [17] YAO Y P, SUN D A, LUO T. A critical state model for sands dependent on stress and density[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28 : 323 – 337.
    [18] GUDEHUS G. A comprehensive constitutive equation for granular materials[J]. Soils and Foundations, 1996, 36 (1): 1 – 12.
    [19] BAUER E. Calibration of a comprehensive hypoplastic model for granular materials[J]. Soils and Foundations, 1996, 36 (1): 13 – s26.
    [20] MASE G T, MASE G E. Continuum mechanics for Engineers (2nd Edition) [M]. London: CRC Press (Taylor & Francis Group), 1999.
    [21] KIM M K, LADE P V. Single hardening constitutive model for frictional materials I. Plastic potential function[J]. Computers and Geotechnics, 1988, 5 (4): 307 – 324.
    [22] KIM M K, LADE P V. Single hardening constitutive model for frictional materials II. Yield criterion and plastic work contours[J]. Computers and Geotechnics, 1988, 6 (1): 13 – 29.
    [23] COLLINS I F, KELLY P A. A thermomechanical analysis of a family of soil models[J]. Géotechnique, 2002, 52 (7): 507 – 518.
    [24] 王乃东 , 姚仰平 . 基于变换应力方法的各向异性模型三维化 [J]. 岩土工程学报 , 2011, 33 (1): 50 – 56. (WANG Nai-dong, YAO Yang-ping. Generalization of anisotropic constitutive models using transformed stress method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (1): 50 – 56. (in Chinese))
    [25] MATSUOKA H, YAO Y P, SUN D A. The cam-clay models modified by the SMP criterion[J]. Soils and Foundations, 1999, 39 (1): 81 – 95.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 发布日期:  2011-10-14

目录

    /

    返回文章
    返回