• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
杨凯旋, 赵衡, 赵明华. 考虑桩岩界面体积剪缩的灌注桩竖向荷载传递解析解[J]. 岩土工程学报. DOI: 10.11779/CJGE20240112
引用本文: 杨凯旋, 赵衡, 赵明华. 考虑桩岩界面体积剪缩的灌注桩竖向荷载传递解析解[J]. 岩土工程学报. DOI: 10.11779/CJGE20240112
Analytical solution for vertical load transfer of cast-in-place pile considering shear-induced volumetric contraction across shaft-rock joints[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240112
Citation: Analytical solution for vertical load transfer of cast-in-place pile considering shear-induced volumetric contraction across shaft-rock joints[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240112

考虑桩岩界面体积剪缩的灌注桩竖向荷载传递解析解

Analytical solution for vertical load transfer of cast-in-place pile considering shear-induced volumetric contraction across shaft-rock joints

  • 摘要: 当钻孔灌注桩深入软岩地层时,其竖向荷载传递行为与桩岩界面的粗糙度具有高度相关性,具体表现为孔壁与桩身的接触面在荷载作用下错动而剪胀并引起侧向约束(法向应力)的增加。现有基于Patton模型及其广义模型的桩岩界面建模方法可较好地模拟峰前剪胀过程中法向应力的增长过程;但其忽略了一个重要事实:当剪胀达到一定程度时,孔壁粗糙体将由于局部应力增加而破坏,此时由于剪胀过程所积蓄的系统内能将随粗糙体的断裂或破坏被迅速释放,在宏观上表现为桩岩界面的体积剪缩并引起法向应力的减小。为此,本文综合已有室内试验的观测结果并基于单边受压楔体的上限解确定了三角形粗糙体破坏时的几何特征,即原有软岩粗糙体破裂分离出一个新的三角形岩屑并沿着本文定义的剪缩角斜向滑动。在考虑粗糙体几何特征和运动学原理的基础上,利用能量准则求解了剪缩角以及峰后剪缩过程中的滑动摩擦力。随后,修正了已有的界面剪切模型并利用室内直剪试验的结果验证了桩岩界面剪切全过程的应力-位移预测曲线,并据此得到桩的竖向荷载传递解析解。参数分析表明半波长、剪胀角和岩石内摩擦角是影响剪缩角和单位侧阻力发挥的主要因素。

     

    Abstract: In soft rock strata, the vertical load transfer behavior of cast-in-place pile is significantly influenced by the roughness of shaft-rock joints. It is particularly pronounced at the interface between the shaft and surrounding rock, where dislocations occur under load, leading to shear dilation and an increase in lateral constraint (normal stress). Existing modellings, such as the Patton’s model and its generalized form, can well predict the normal stress at the pre-peak, but there overlooks a critical aspect; in specific, the potential destruction of the asperity when shear dilation reaches a critical state due to local stress increasing, leading to the rapid release of accumulated energy. This destruction is macroscopically represented as volume shear contraction of the shaft-rock joints, causing a decrease in normal stress. This study identifies the geometries of the failure of a triangular asperity based on the upper-bound solution of a unilaterally compressed wedge and existing laboratory observations. After asperity failed, a newborn debris is separated from the original rock asperity and obliquely slides. Based on considerations of kinematic principles, the energy principle is used to determine the shear contraction angle and the sliding resistance at the post-peak. The modified shear model is verified using the observations of existing direct shear tests. On this basis, analytical solutions for the distribution of axial force are obtained. Parameter studies reveal that the half chord-length, shear dilation inclination, and internal friction angle of rock have a strong impact on the shear contraction angle and unit shaft resistance.

     

/

返回文章
返回