SWCC model for double-pore structured unsaturated clay
-
摘要: 为了真实反映土体内部双孔结构和变形对土持水特性的共同影响,推导建立了考虑变形的双孔结构非饱和土土水特征曲线模型。模型提出以双孔土水特征曲线中的“相接点”作为“双孔”结构非饱和土大小孔隙尺度分界点,并针对不同区间的土水特征曲线分别建立方程。在各分段方程中引入体变参数用来反映不同初始孔隙比下SWCC的变形。采用桂林红黏土压实样,在全吸力范围内开展了土水特征曲线试验,在各级吸力平衡后对土样进行压汞试验,对所建立模型进行验证。结果表明,所建立考虑双孔结构非饱和土土水特征曲线模型对红黏土干化与湿化过程均具有良好的适用性和良好的预测效果,可以反映不同初始孔隙比和不同结构土样在相同水力路径下的水力行为。Abstract: Some mercury intrusion test results show that the soils using the compaction sample preparation method usually present a typical double-pore micro structure, while the existing unsaturated SWCC models are mostly directed to single-pore structural soils. In order to reflect the double-pore structure inside the soils and the joint effects of deformation on water-holding performance, a unsaturated SWCC model for the double-pore structure considering deformation is proposed and verified through experiments. The "junction point" in the double-pore SWCC is regarded as the boundary point of different pore sizes of the double-pore structured unsaturated soils, and equations for the SWCC of different sections are established. The parameter is introduced in the segment equation to reflect the influences of the deformation. According to the compacted samples of Guilin lateritic clay, the SWCC tests in the full suction range are carried out based on the shaft translation technique, the filter paper method and the saturated salt solution steam balance method. The model parameters are calibrated, and the proposed model is verified.
-
-
表 1 压实土干化试验参数标定(e0=1.5)
Table 1 The parameter calibration of compacted soil in drying test (e0=1.5)
大孔隙SWCC标定参数 a m n ζ R2 30.119 0.18539 6.3635 0.38 0.999 小孔隙SWCC标定参数 a′ m′ n′ ζ′ R2 17930 1.55863 2.3590 0.95 0.994 表 2 压实土干化试验参数标定(e0=1.5)
Table 2 Parameter calibration of compacted soils in drying tests (e0=1.5)
大孔隙SWCC标定参数 a m n ζ R2 21.57 0.3258 2.9294 0.90 0.979 小孔隙SWCC标定参数 a′ m′ n′ ζ′ R2 17893 1.65484 2.0601 0.90 0.996 -
[1] 蔡国庆, 王亚南, 周安楠, 等. 考虑微观孔隙结构的非饱和土水–力耦合本构模型[J]. 岩土工程学报, 2018, 40(4): 618–624. doi: 10.11779/CJGE201804005 CAI Guo-qing, WANG Ya-nan, ZHOU An-nan, et al. A microstructure-dependent hydro-mechanical coupled constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 618–624. (in Chinese) doi: 10.11779/CJGE201804005
[2] 黄启迪, 蔡国庆, 赵成刚. 非饱和土干化过程微观结构演化规律研究[J]. 岩土力学, 2017, 38(1): 165–173. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701022.htm HUANG Qi-di, CAI Guo-qing, ZHAO Cheng-gang. Microstructure evolution of unsaturated soil during drying process[J]. Rock and Soil Mechanics, 2017, 38(1): 165–173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701022.htm
[3] 蔡国庆, 尤金宝, 赵成刚, 等. 双孔结构非饱和压实黏土的渗流-变形耦合微观机理[J]. 水利学报, 2015, 46(增刊1): 135–141. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1025.htm CAI Guo-qing, YOU Jin-bao, ZHAO Cheng-gang, et al. Microcosmic mechanism for flow-deformation coupling of unsaturated compacted clay with double porosity[J]. Journal of Hydraulic Engineering, 2015, 46(S1): 135–141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1025.htm
[4] 孙德安, 张舟, 高游, 等. 黏性土土水特征曲线基本参数的确定[J]. 上海大学学报(自然科学版), 2019, 25(6): 957–964. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201906012.htm SUN De-an, ZHANG Zhou, GAO You, et al. Determination of basic parameters of SWCC for clayer soils[J]. Journal of Shanghai University (Natural Science Edition), 2019, 25(6): 957–964. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201906012.htm
[5] 韦昌富, 李幻, 王吉利. 考虑弹塑性变形和毛细循环滞回的非饱和土本构模型[C]//第一届全国岩土本构理论研讨会论文集. 北京, 2008: 265–272. WEI Chang-fu, LI Huan, WANG Ji-li. A constitutive model of unsaturated soils with consideration to coupling of elastoplastic deformation and capillary hysteresis[C]// Proc 1st National Conference on Constitutive Theory for Geomaterials, 2008: 259–266. (in Chinese)
[6] 牛庚, 邵龙潭, 孙德安, 等. 土-水特征曲线测量过程中孔隙分布的演化规律探讨[J]. 岩土力学, 2020, 41(4): 1195–1202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004010.htm NIU Geng, SHAO Long-tan, SUN De-an, et al. Evolution law of pore-size distribution in soil-water retention test[J]. Rock and Soil Mechanics, 2020, 41(4): 1195–1202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004010.htm
[7] BROOKS R H. Hydraulic properties of porous media[M]. Fort Collins: Colorado State University, 1964.
[8] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898.
[9] FREDLUND D G, XING A Q. Erratum: Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(6): 1026.
[10] BURGER C A, SHACKELFORD C D. Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions[J]. Canadian Geotechnical Journal, 2001, 38(1): 53–66.
[11] LI X, LI J H, ZHANG L M. Predicting bimodal soil-water characteristic curves and permeability functions using physically based parameters[J]. Computers and Geotechnics, 2014, 57: 85–96.
[12] LI J, ZHAO C G, CAI G Q, et al. The input work expression and the thermodynamics-based modelling framework for unsaturated expansive soils with double porosity[J]. Chinese Science Bulletin, 2013, 58(27): 3422–3429.
[13] HUANG S Y, BARBOUR S L, FREDLUND D G. Development and verification of a coefficient of permeability function for a deformable unsaturated soil[J]. Canadian Geotechnical Journal, 1998, 35(3): 411–425.
[14] 胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451–1462. http://cge.nhri.cn/cn/article/id/15253 HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451–1462. (in Chinese) http://cge.nhri.cn/cn/article/id/15253
[15] CAI G Q, ZHOU A N, SHENG D C. Permeability function for unsaturated soils with different initial densities[J]. Canadian Geotechnical Journal, 2014, 51(12): 1456–1467.
[16] 蔡国庆, 张策, 李舰, 等. 考虑初始干密度影响的SWCC预测方法研究[J]. 岩土工程学报, 2018, 40(增刊2): 27–31. doi: 10.11779/CJGE2018S2006 CAI Guo-qing, ZHANG Ce, LI Jian, et al. Prediction method for SWCC considering initial dry density[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 27–31. (in Chinese) doi: 10.11779/CJGE2018S2006
[17] ZHOU A N, SHENG D, CARTER J P. Modelling the effect of initial density on soil-water characteristic curves[J]. Géotechnique, 2012, 62(8): 669–680.