Parameter identification method of time-domain stable discrete rational approximation for frequency response of foundations
-
摘要: 离散时间有理近似函数是建立基础动力分析模型的重要方法之一。而有理函数的稳定性和精度决定了动力时程分析的稳定性和精度。目前关于离散时间有理近似函数的研究主要集中于时域分析模型建立,而无法同时保证辨识函数的稳定性、精度及计算效率。基于系统稳定性理论,将有理近似函数看成一阶与二阶系统的组合,并根据其根的稳定条件推导了被辨识参数的稳定界限。在此基础上,利用遗传算法与序列二次规划算法提出了时域稳定的参数识别方法。通过对不同基础频响函数的数值仿真,验证了该方法辨识参数的稳定性与精度。由于该方法限制了参数取值范围,其计算效率也得到了大幅度提高。Abstract: The discrete-time rational approximation function is one of the important methods for establishing dynamic analysis model for foundations. The stability and accuracy of the rational function determine those of dynamic time history analysis. At present, the researches on the discrete-time rational approximation function mainly focus on the establishment of time-domain analysis model, but they cannot guarantee the stability, accuracy and calculation efficiency of the identification function at the same time. Based on the theory of system stability, the rational approximation function is regarded as the combination of first-order and second-order systems, and the stability boundary of identification parameters is derived according to the stability condition of its roots. On this basis, a time-domain stable parameter identification method is proposed by using the genetic algorithm and the sequential quadratic programming algorithm. The stability and accuracy of parameter identification are verified through numerical simulation of different frequency response functions for foundations. Due to the boundary of parameter range, the calculation efficiency is also greatly improved.
-
-
表 1 3×3群桩基础辨识效率
Table 1 Identification efficiency of foundation with 3×3 pile groups
阶次 3 4 5 6 7 本文方法/s 1.82 2.24 2.24 2.86 2.92 罚函数法/s 3.53 4.67 8.41 16.17 33.67 表 2 5×5群桩基础拟合精度与效率
Table 2 Identification accuracy and efficiency of foundation with 5×5 pile groups
阶次 3 4 5 6 7 误差/% 18.80 18.23 13.02 2.03 1.97 时间/s 9.02 8.15 9.81 13.74 16.46 表 3 圆形基础拟合精度与效率
Table 3 Identification accuracy and efficiency of circular foundation
阶次 3 5 7 9 11 误差/% 16.82 12.29 7.49 6.74 6.62 时间/s 4.46 4.19 5.79 7.12 8.66 -
[1] 崔春义, 孟坤, 武亚军, 等. 考虑竖向波动效应的径向非均匀黏性阻尼土中管桩纵向振动响应研究[J]. 岩土工程学报, 2018, 40(8): 1433-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808010.htm CUI Chun-yi, MENG Kun, WU Ya-jun, et al. Dynamic response of vertical vibration of pipe piles in soils with radial inhomogeneousity and viscous damping considering vertical wave effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1433-1443. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808010.htm
[2] 杨林青, 韩泽军, 林皋, 等. 横观各向同性层状地基上任意形状刚性基础动力响应求解与分析[J]. 岩土工程学报, 2020, 42(7): 1257-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007013.htm YANG Lin-qing, HAN Ze-jun, LIN Gao, et al. Solution and analysis for dynamic response of arbitrarily shaped rigid foundation on transversely isotropic layered soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1257-1267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007013.htm
[3] 赵密, 杜修力. 基础频响有理近似的稳定性和识别:离散时间的递归算法[J]. 工程力学, 2010, 27(1): 141-147,153. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201001027.htm ZHAO Mi, DU Xiu-li. Stability and identification for rational approximation of foundation frequency response: discrete-time recursive evaluations[J]. Engineering Mechanics, 2010, 27(1): 141-147, 153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201001027.htm
[4] 赵密, 杜修力. 基础频响有理近似的稳定性和识别:连续时间的集中参数模型[J]. 工程力学, 2009, 26(12): 76-84, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200912017.htm ZHAO Mi, DU Xiu-li. Stability and identification for rational approximation of foundation frequency response: continuous-time lumped-parameter models[J]. Engineering Mechanics, 2009, 26(12): 76-84, 99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200912017.htm
[5] PARONESSO A, WOLF J P. Recursive evaluation of interaction forces and property matrices from unit-impulse response functions of unbounded medium based on balancing approximation[J]. Earthquake Engineering and Structural Dynamics, 1998, 27: 609-618. doi: 10.1002/(SICI)1096-9845(199806)27:6<609::AID-EQE745>3.0.CO;2-M
[6] WOLF JP, MOTOSAKA M. Recursive evaluation of interaction forces of unbounded soil in the time domain from dynamic-stiffness coefficients in the frequency domain[J]. Earthquake Engineering and Structural Dynamics, 1989, 18: 365-376. doi: 10.1002/eqe.4290180305
[7] SAFAK E. Time-domain representation of frequency- dependent foundation impedance functions[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(1): 65-70. doi: 10.1016/j.soildyn.2005.08.004
[8] 杜修力, 赵建锋, 韩强. 精度可控地基阻抗力的一种时域差分计算方法[J]. 力学学报, 2008, 40(1): 59-66. doi: 10.3321/j.issn:0459-1879.2008.01.008 DU Xiu-li, ZHAO Jian-feng, HAN Qiang. Accuracy controllable time-domain difference approach to calculate foundation resisting force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 59-66. (in Chinese) doi: 10.3321/j.issn:0459-1879.2008.01.008
[9] LAUDON A D, KWON O S, GHAEMMAGHAMI A R. Stability of the time-domain analysis method including a frequency-dependent soil-foundation system[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(15): 2737-2754. doi: 10.1002/eqe.2606
[10] GASH R, SEVLABI E E, TACIROGLU E. Implementation and stability analysis of discrete-time filters for approximating frequency-dependent impedance functions in the time domain[J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 223-233. doi: 10.1016/j.soildyn.2017.01.021
[11] SUNG Y C, CHEN C C. Z-transferred discerte-time infinite impulse response filter as foundation-soil impedance function for SDOF dynamic structural response considering soil-structure interaction[J]. Earthquake Spectra, 2019, 35(2): 1003-1022.
[12] 赵建锋, 杜修力. 地基阻抗力时域递归参数的计算方法及程序实现[J]. 岩土工程学报, 2008, 30(1): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200801007.htm ZHAO Jian-feng, DU Xiu-li. Computation method and realization procedure for time-domain recursive parameters of ground resistance[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 34-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200801007.htm
[13] OPPENHEIM A V, WILLSKY A S, NAWBA S H. Signals & Systems[M]. 2nd ed. New Jersey: Prentice-Hall Inc, 1997.
[14] HAN Y C, SABIN G C W. Impedances for radially inhomogeneous viscoelastic soil media[J]. Journal of Engineering Mechanics, 1995, 121(9): 939-947.
[15] 黄茂松, 吴志明, 任青. 层状地基中群桩的水平振动特性[J]. 岩土工程学报, 2007, 29(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200701004.htm HUANG Mao-song, WU Zhi-ming, REN Qing. Lateral vibration of pile groups in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 32-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200701004.htm
[16] WANG C, YAN C Q, WANG J J, et al. Parametric optimization of steam cycle in PWR nuclear power plant using improved genetic-simplex algorithm[J]. Applied Thermal Engineering, 2017, 125: 830-845.
[17] 文学章, 尚守平. 层状地基中桩筏基础的动力阻抗研究[J]. 工程力学, 2009, 26(8): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200908019.htm WEN Xue-zhang, SHANG Shou-ping. Research on dynamic impedance functions of pile-raft foundation in layered soil[J]. Engineering Mechanics, 2009, 26(8): 95-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200908019.htm
-
期刊类型引用(2)
1. 李鑫,唐贞云,杜修力. 半无限介质多自由度频响函数离散时间有理近似的稳定参数识别. 工程力学. 2024(08): 1-10 . 百度学术
2. 张聪,冯忠居,王富春,马晓谦,陈慧芸. 强震作用下嵌岩群桩时程响应振动台试验. 应用基础与工程科学学报. 2023(03): 703-714 . 百度学术
其他类型引用(0)