• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于主动加热光纤法的毛细阻滞入渗模型试验研究

王家琛, 朱鸿鹄, 王静, 曹鼎峰, 苏立君, ReddyNarala Gangadhara

王家琛, 朱鸿鹄, 王静, 曹鼎峰, 苏立君, ReddyNarala Gangadhara. 基于主动加热光纤法的毛细阻滞入渗模型试验研究[J]. 岩土工程学报, 2021, 43(1): 147-155. DOI: 10.11779/CJGE202101017
引用本文: 王家琛, 朱鸿鹄, 王静, 曹鼎峰, 苏立君, ReddyNarala Gangadhara. 基于主动加热光纤法的毛细阻滞入渗模型试验研究[J]. 岩土工程学报, 2021, 43(1): 147-155. DOI: 10.11779/CJGE202101017
WANG Jia-chen, ZHU Hong-hu, WANG Jing, CAO Ding-feng, SU Li-jun, Reddy Narala Gangadhara. Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 147-155. DOI: 10.11779/CJGE202101017
Citation: WANG Jia-chen, ZHU Hong-hu, WANG Jing, CAO Ding-feng, SU Li-jun, Reddy Narala Gangadhara. Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 147-155. DOI: 10.11779/CJGE202101017

基于主动加热光纤法的毛细阻滞入渗模型试验研究  English Version

基金项目: 

国家重点研发计划课题 2018YFC1505104

国家自然科学基金优秀青年基金项目 41722209

中国科学院山地灾害与地表过程重点实验室开放基金项目 

详细信息
    作者简介:

    王家琛(1995— ),男,硕士研究生,主要从事地质工程方面的研究工作。E-mail: wang_jc@smail.nju.edu.cn

    通讯作者:

    朱鸿鹄, E-mail: zhh@nju.edu.cn

  • 中图分类号: TU411

Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method

  • 摘要: 毛细阻滞效应是多层、不同粒径非饱和土入渗过程中的一个自然现象。为了探究多层土水分入渗的毛细阻滞过程,设计了室内模型试验,采用主动加热光纤法(AHFO法)对多层土的水分迁移进行试验,并结合频域反射法(FDR法)和直接观测法作为验证。试验结果表明:相较于FDR法和直接观测法,AHFO法对降雨入渗所产生的毛细阻滞现象具有较好的观测效果,可观测出水分运移的更多细节;运用FDR法,对AHFO传感器进行原位标定,曲线拟合精度R2均大于0.93,具有较高的体积含水率监测准确度;毛细阻滞层对降雨入渗具有明显的阻滞效应,即存储屏障上部入渗和减少水分向下部水体渗出。相关研究结论为毛细阻滞现象研究以及土壤水分场监测提供了一种新的监测方法。
    Abstract: The capillary barrier effect is a natural phenomenon during the infiltration of unsaturated soil layers with different particle sizes. In order to test the capillary barrier effect of multi-layer soils, laboratory model tests are designed. Subsequently, the actively heated fiber optic (AHFO) method is used to test the water migration of the model tests, and the direct observation method and the frequency domain reflection (FDR) technology are used for verification. The analysis of test shows that compared with the direct observation method and the FDR method, the AHFO method has a better observation effect on the capillary barrier phenomenon caused by rainfall infiltration, and can observe more details of water movement as well. The FDR method is used to perform the in-situ calibration of the AHFO sensor, and the curve-fitting accuracy R2 is greater than 0.93, indicating a high accuracy of volume water content monitoring. The capillary barrier layer has a significant retarding effect on rainfall infiltration, that is, infiltration water can be saved at the storage barrier which can also reduce seepage to the layer under the barrier. The research results may provide a new method for the research on capillary barrier effect and the monitoring of water content distribution.
  • 土工测试专业委员会自成立以来,开展了一系列的学术研讨活动,迄今已举办30届全国土工测试学术研讨会。进入21世纪以来,因气候变化和全球变暖导致极端气候事件增多,暴雨、滑坡、泥石流等自然灾害频发,给岩土工程建设和土工测试技术带来了前所未有的挑战,在对环境保护、可持续发展和数字经济越来越重视的趋势下,工程建设需要更加精准地评估岩土参数,对土工测试技术的发展提出了更高要求。

    土工测试技术的发展不仅能够促进岩土工程设计的优化,也能够推动岩土工程理论的创新。为促进相互交流学习,第30届全国土工测试学术研讨会围绕土的基本性质测试、土工物理模型测试、土工原位测试、现场土工监测、环境土工测试、特殊土测试等方面进行了广泛的学术交流。

    第30届全国土工测试学术研讨会于2023年8月18—20日在北京召开,会议由中国土木工程学会土力学及岩土工程分会和中国水利学会岩土力学专业委员会共同主办,中国水利水电科学研究院、南京水利科学研究院、长江科学院等14家单位承办。会议筹办期间共收到110篇学术论文,经审稿委员会审议向《岩土工程学报》(增刊)荐论文56篇。同时,本届研讨会举办了细粒土三轴压缩平行试验,共收到19家单位的试验成果。本次会议以“探索•创新”为主题,会议设主会场1个,分会场4个,参会报名约60家单位,共组织特邀报告24个、主题报告64个。论文和报告涉及内容丰富,既有对学科基础理论的深入探讨,又有针对工程实践的案例分析和经验总结,这种跨学科的研讨有力地推动了土工测试领域的发展。

    感谢对本届会议的召开鼎力相助的中国水利水电科学研究院及各有关单位,感谢向本届会议投稿并对因疫情而延期表示理解的各位专家和同行,感谢审稿专家对本次会议审稿工作的辛勤付出。尤其是《岩土工程学报》编辑部,为使本届会议的论文集面世,做了大量工作,专门编辑出版了本期增刊,特此表示感谢。

    第30届全国土工测试学术研讨会组委会

  • 图  1   细土-粗土毛细阻滞系统界面附近的毛细水静水平衡

    Figure  1.   Hydrostatic equilibrium of capillary water near interface of fine soil-coarse soil capillary barrier system

    图  2   主动加热光纤法的监测原理

    Figure  2.   Monitoring principle of AHFO method

    图  3   土样的粒径分布曲线

    Figure  3.   Grain-size distribution curves of soil samples

    图  4   土样吸湿土水特征曲线

    Figure  4.   Wetting curves of soil-water characteristic for samples

    图  5   AHFO传感器示意图

    Figure  5.   Schematic of AHFO alundum tube

    图  6   试验设备布置

    Figure  6.   Layout of test equipments

    图  7   温度场-时间变化趋势

    Figure  7.   Changing tendency of temperature field and time

    图  8   温度特征值与体积含水率关系

    Figure  8.   Relationship between temperature characteristic value and volume water content

    图  9   入渗不同阶段的影像与含水率分布

    Figure  9.   Images at different stages of infiltration and vertical distribution of water content

    图  10   水分场-时间变化趋势

    Figure  10.   Changing tendency of water distribution and time

    图  11   湿润锋平均运移速度和时间的变化关系

    Figure  11.   Relationship between average velocity and time of wet front migration

    表  1   两类土含水率监测方法对比

    Table  1   Comparison of two types of monitoring methods for water content of soils

    对比项目FDR法AHFO法
    直接测量参数介电常数温度变化量
    监测方式点式分布式
    传感器标定出厂前完成标定,必要时可再次标定出厂后室内或原位标定
    适用土层低盐度的 粗、细粒土层 粗、细粒土层
    现场安装直接埋置直接埋置或钻孔埋设
    下载: 导出CSV

    表  2   试验土体的基本参数

    Table  2   Basic parameters of the test soils

    土类颗粒相对质量密度目标干密度/(g·cm-3)饱和渗透系数/(10-2cm·s-1)
    细砂2.691.581.03
    中砂2.681.622.30
    下载: 导出CSV

    表  3   FDR传感器主要技术指标

    Table  3   Main technical parameters of FDR sensors

    含水率测量范围/(m3·m-3)传感器尺寸/cm工作温度/℃测量耗时/ms精度/(m3·m-3)
    0~18.9×1.8×0.7-40~6010±0.03
    下载: 导出CSV

    表  4   FBG解调仪主要技术指标

    Table  4   Main technical parameters of FBG demodulator

    光纤类型波长分辨率/pm解调速率/Hz动态范围/dB
    62.5/1251≥135
    下载: 导出CSV

    表  5   时间-降雨强度表

    Table  5   Time-rainfall intensity setting

    降雨阶段降雨时间/h降雨强度/(mm·h-1)降雨类型
    I0~23~5暴雨—大暴雨
    II2.5~67~14大暴雨
    III19.33~24.336~12大暴雨
    下载: 导出CSV

    表  6   湿润锋到达不同高程的时间对比

    Table  6   Comparison of time of wet front arriving at different heights  (min)

    抵达高程/cm含水率/%
    81012
    4549.55558.7
    35202204206
    25295301307
    15491499510.8
    5139213951400
    下载: 导出CSV
  • [1]

    AU S W C. Rainfall and slope failure in Hong Kong[J]. Engineering Geology, 1993, 36(1/2): 141-147.

    [2]

    KASSIM A, GOFAR N, LEE L M, et al. Modeling of suction distributions in an unsaturated heterogeneous residual soil slope[J]. Engineering Geology, 2012, 131: 70-82.

    [3]

    LEE M L, NG K Y, HUANG Y F, et al. Rainfall-induced landslides in Hulu Kelang area, Malaysia[J]. Natural Hazards, 2014, 70(1): 353-375. doi: 10.1007/s11069-013-0814-8

    [4]

    JONES D D, ROWE R K. BTEX migration through various geomembranes and vapor barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016044. doi: 10.1061/(ASCE)GT.1943-5606.0001502

    [5]

    TAN S H, WONG S W, LEE M L, et al. Soil column infiltration tests on biomediated capillary barrier systems for mitigating rainfall-induced landslides[J]. Environmental Earth Sciences, 2018, 77(16): 589. doi: 10.1007/s12665-018-7770-2

    [6] 焦卫国, 詹良通, 季永新, 等. 黄土-碎石毛细阻滞覆盖层储水能力实测与分析[J]. 岩土工程学报, 2019, 41(6): 1149-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm

    JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al. Field test and study on water storage capacity of loess-gravel capillary barrier cover[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm

    [7]

    RAHARDJO H, GOFAR N, HARNAS F, et al. Effect of geobags on water flow through capillary barrier system[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2018, 49(2): 1-6.

    [8]

    ZASLAVSKY D, SINAI G. Surface hydrology: IV Flow in sloping, layered soil[J]. Journal of the Hydraulics Division, 1981, 107(1): 53-64. doi: 10.1061/JYCEAJ.0005606

    [9]

    HO C K, WEBB S W. Capillary barrier performance in heterogeneous porous media[J]. Water Resources Research, 1998, 34(4): 603-609. doi: 10.1029/98WR00217

    [10]

    ROSS B. The diversion capacity of capillary barriers[J]. Water Resources Research, 1990, 26(10): 2625-2629. doi: 10.1029/WR026i010p02625

    [11]

    STORMONT J C. The effectiveness of two capillary barriers on a 10% slope[J]. Geotechnical & Geological Engineering, 1996, 14(4): 243-267.

    [12]

    YANG H, RAHARDJO H, LEONG E C, et al. A study of infiltration on three sand capillary barriers[J]. Canadian Geotechnical Journal, 2004, 41(4): 629-643. doi: 10.1139/t04-021

    [13]

    CUDE S M, ANKENY M D, NORTON J B, et al. Capillary barriers improve reclamation in drastically disturbed semiarid shrubland[J]. Arid Land Research and Management, 2018, 32(3): 259-276. doi: 10.1080/15324982.2018.1448903

    [14]

    NIU Q, FRATTA D, WANG Y H. The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils[J]. Journal of Hydrology, 2015, 522: 475-487. doi: 10.1016/j.jhydrol.2014.12.055

    [15]

    BARBOUR S L, HENDRY M J, CAREY S K. High-resolution profiling of the stable isotopes of water in unsaturated coal waste rock[J]. Journal of Hydrology, 2016, 534: 616-629. doi: 10.1016/j.jhydrol.2016.01.053

    [16] 张志军, 李亚俊, 贺桂成, 等. 某尾矿坝毛细水带内的坝体材料物理力学特性研究[J]. 岩土力学, 2014, 35(6): 1561-1568. doi: 10.16285/j.rsm.2014.06.028

    ZHANG Zhi-jun, LI Ya-jun, HE Gui-cheng, et al. Study of physico-mechanical properties of dam body materials in capillary water fringe of a certain tailings dam[J]. Rock and Soil Mechanics, 2014, 35(6): 1561-1568. (in Chinese) doi: 10.16285/j.rsm.2014.06.028

    [17]

    DOBRIYAL P, QURESHI A, BADOLA R, et al. A review of the methods available for estimating soil moisture and its implications for water resource management[J]. Journal of Hydrology, 2012, 458: 110-117.

    [18]

    SU S L, SINGH D N, BAGHINI M S. A critical review of soil moisture measurement[J]. Measurement, 2014, 54: 92-105. doi: 10.1016/j.measurement.2014.04.007

    [19]

    YIN Z, LEI T, YAN Q, et al. A near-infrared reflectance sensor for soil surface moisture measurement[J]. Computers and Electronics in Agriculture, 2013, 99: 101-107. doi: 10.1016/j.compag.2013.08.029

    [20]

    CAO D, SHI B, ZHU H, et al. A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(6): 700-707. doi: 10.1016/j.jrmge.2015.08.003

    [21] 郝瑞, 施斌, 曹鼎峰, 等. 基于 AHFO 技术的毛细水运移模型验证试验研究[J]. 岩土工程学报, 2019, 41(2): 376-382. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902019.htm

    HAO Rui, SHI Bin, CAO Ding-feng, et al. Experimental study on capillary water transport model based on AHFO technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 376-382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902019.htm

    [22]

    CAO D, SHI B, ZHU H, et al. Performance evaluation of two types of heated cables for distributed temperature sensing-based measurement of soil moisture content[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(2): 212-217. doi: 10.1016/j.jrmge.2015.09.005

    [23]

    CAO D, SHI B, WEI G, et al. An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers[J]. Measurement, 2018, 123: 175-184. doi: 10.1016/j.measurement.2018.03.052

    [24] 曹鼎峰, 施斌, 顾凯, 等. 土的含水率 AHFO 法测量中分段函数模型建立[J]. 水文地质工程地质, 2016, 43(6): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606007.htm

    CAO Ding-feng, SHI Bin, GU Kai, et al. Establishment of the piecewise function model in the process of soil moisture monitoring with the AHFO method[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 41-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606007.htm

    [25]

    LU N, LIKOS W. Unsaturated Soil Mechanics[M]. New York: John Wiley & Sons, Inc, 2004.

    [26]

    KODEŠOVÁ R, KODEŠ V, MRAZ A. Comparison of two sensors ECH2O EC-5 and SM200 for measuring soil water content[J]. Soil and Water Research, 2011, 6(2): 102-110. doi: 10.17221/6/2011-SWR

    [27]

    DECAGON. EC-5 Volumetric Water Content Sensor: Manual[EB/OL]. 2015.

    [28] 董翰川, 庞丽丽, 史云. 频域反射分析法测定土壤含水率标定试验研究[J]. 水文地质工程地质, 2019, 46(3): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903008.htm

    DONG Han-chuan, PANG Li-li, SHI Yun. An experimental study of calibration of soil moisture content by using the frequency domain reflectometry[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 55-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903008.htm

    [29]

    HILHORST M A, BALENDONCK J, KAMPERS F W H. A broad-bandwidth mixed analog/digital integrated circuit for the measurement of complex impedance[J]. IEEE Journal of Solid-state Circuits, 1993, 28(7): 764-769.

    [30]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.

    [31] 段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管 FBG 渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm

    DUAN Chao-zhe, SHI Bin, CAO Ding-feng, et al. A quasi-distributed velocity monitoring method using FBG embedded in internal heated alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504-510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm

    [32]

    HSU S Y, HUANG V, PARK S W, et al. Water infiltration into prewetted porous media: dynamic capillary pressure and Green-Ampt modeling[J]. Advances in Water Resources, 2017, 106: 60-67.

    [33]

    DE VRIES D A. Thermal Properties of Soil. In ‘Physics of Plant Environment’[M]. Amsterdam: North-Holland Publishing Company, 1963: 210-235.

    [34]

    BRISTOW K L. 5.3 Thermal conductivity[J]. Methods of Soil Analysis: Part 4 Physical Methods, 2002(5): 1209-1226.

    [35] 曹鼎峰, 施斌, 严珺凡, 等. 基于 C-DTS 的土壤含水率分布式测定方法研究[J]. 岩土工程学报, 2014, 36(5): 910-915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm

    CAO Ding-feng, SHI Bin, YAN Jun-fan, et al. Distributed method for measuring moisture content of soils based on C-DTS[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 910-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm

    [36]

    BENÍTEZ-BUELGA J, SAYDE C, RODRÍGUEZ-SINOBAS L, et al. Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach[J]. Vadose Zone Journal, 2014, 13(11): 1-12.

    [37]

    WU J, SHI B, CAO D, et al. Model test of soil deformation response to draining-recharging conditions based on DFOS[J]. Engineering Geology, 2017, 226: 107-121.

    [38]

    LIU S, SHI B, GU K, et al. Land subsidence monitoring in sinking coastal areas using distributed fiber optic sensing: a case study[J]. Natural Hazards, 2020, 103: 3043-3061.

图(11)  /  表(6)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  39
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-28
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回