Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method
-
摘要: 毛细阻滞效应是多层、不同粒径非饱和土入渗过程中的一个自然现象。为了探究多层土水分入渗的毛细阻滞过程,设计了室内模型试验,采用主动加热光纤法(AHFO法)对多层土的水分迁移进行试验,并结合频域反射法(FDR法)和直接观测法作为验证。试验结果表明:相较于FDR法和直接观测法,AHFO法对降雨入渗所产生的毛细阻滞现象具有较好的观测效果,可观测出水分运移的更多细节;运用FDR法,对AHFO传感器进行原位标定,曲线拟合精度R2均大于0.93,具有较高的体积含水率监测准确度;毛细阻滞层对降雨入渗具有明显的阻滞效应,即存储屏障上部入渗和减少水分向下部水体渗出。相关研究结论为毛细阻滞现象研究以及土壤水分场监测提供了一种新的监测方法。Abstract: The capillary barrier effect is a natural phenomenon during the infiltration of unsaturated soil layers with different particle sizes. In order to test the capillary barrier effect of multi-layer soils, laboratory model tests are designed. Subsequently, the actively heated fiber optic (AHFO) method is used to test the water migration of the model tests, and the direct observation method and the frequency domain reflection (FDR) technology are used for verification. The analysis of test shows that compared with the direct observation method and the FDR method, the AHFO method has a better observation effect on the capillary barrier phenomenon caused by rainfall infiltration, and can observe more details of water movement as well. The FDR method is used to perform the in-situ calibration of the AHFO sensor, and the curve-fitting accuracy R2 is greater than 0.93, indicating a high accuracy of volume water content monitoring. The capillary barrier layer has a significant retarding effect on rainfall infiltration, that is, infiltration water can be saved at the storage barrier which can also reduce seepage to the layer under the barrier. The research results may provide a new method for the research on capillary barrier effect and the monitoring of water content distribution.
-
-
表 1 两类土含水率监测方法对比
Table 1 Comparison of two types of monitoring methods for water content of soils
对比项目 FDR法 AHFO法 直接测量参数 介电常数 温度变化量 监测方式 点式 分布式 传感器标定 出厂前完成标定,必要时可再次标定 出厂后室内或原位标定 适用土层 低盐度的 粗、细粒土层 粗、细粒土层 现场安装 直接埋置 直接埋置或钻孔埋设 表 2 试验土体的基本参数
Table 2 Basic parameters of the test soils
土类 颗粒相对质量密度 目标干密度/(g·cm-3) 饱和渗透系数/(10-2cm·s-1) 细砂 2.69 1.58 1.03 中砂 2.68 1.62 2.30 表 3 FDR传感器主要技术指标
Table 3 Main technical parameters of FDR sensors
含水率测量范围/(m3·m-3) 传感器尺寸/cm 工作温度/℃ 测量耗时/ms 精度/(m3·m-3) 0~1 8.9×1.8×0.7 -40~60 10 ±0.03 表 4 FBG解调仪主要技术指标
Table 4 Main technical parameters of FBG demodulator
光纤类型 波长分辨率/pm 解调速率/Hz 动态范围/dB 62.5/125 1 ≥1 35 表 5 时间-降雨强度表
Table 5 Time-rainfall intensity setting
降雨阶段 降雨时间/h 降雨强度/(mm·h-1) 降雨类型 I 0~2 3~5 暴雨—大暴雨 II 2.5~6 7~14 大暴雨 III 19.33~24.33 6~12 大暴雨 表 6 湿润锋到达不同高程的时间对比
Table 6 Comparison of time of wet front arriving at different heights
(min) 抵达高程/cm 含水率/% 8 10 12 45 49.5 55 58.7 35 202 204 206 25 295 301 307 15 491 499 510.8 5 1392 1395 1400 -
[1] AU S W C. Rainfall and slope failure in Hong Kong[J]. Engineering Geology, 1993, 36(1/2): 141-147.
[2] KASSIM A, GOFAR N, LEE L M, et al. Modeling of suction distributions in an unsaturated heterogeneous residual soil slope[J]. Engineering Geology, 2012, 131: 70-82.
[3] LEE M L, NG K Y, HUANG Y F, et al. Rainfall-induced landslides in Hulu Kelang area, Malaysia[J]. Natural Hazards, 2014, 70(1): 353-375. doi: 10.1007/s11069-013-0814-8
[4] JONES D D, ROWE R K. BTEX migration through various geomembranes and vapor barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016044. doi: 10.1061/(ASCE)GT.1943-5606.0001502
[5] TAN S H, WONG S W, LEE M L, et al. Soil column infiltration tests on biomediated capillary barrier systems for mitigating rainfall-induced landslides[J]. Environmental Earth Sciences, 2018, 77(16): 589. doi: 10.1007/s12665-018-7770-2
[6] 焦卫国, 詹良通, 季永新, 等. 黄土-碎石毛细阻滞覆盖层储水能力实测与分析[J]. 岩土工程学报, 2019, 41(6): 1149-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al. Field test and study on water storage capacity of loess-gravel capillary barrier cover[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm
[7] RAHARDJO H, GOFAR N, HARNAS F, et al. Effect of geobags on water flow through capillary barrier system[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2018, 49(2): 1-6.
[8] ZASLAVSKY D, SINAI G. Surface hydrology: IV Flow in sloping, layered soil[J]. Journal of the Hydraulics Division, 1981, 107(1): 53-64. doi: 10.1061/JYCEAJ.0005606
[9] HO C K, WEBB S W. Capillary barrier performance in heterogeneous porous media[J]. Water Resources Research, 1998, 34(4): 603-609. doi: 10.1029/98WR00217
[10] ROSS B. The diversion capacity of capillary barriers[J]. Water Resources Research, 1990, 26(10): 2625-2629. doi: 10.1029/WR026i010p02625
[11] STORMONT J C. The effectiveness of two capillary barriers on a 10% slope[J]. Geotechnical & Geological Engineering, 1996, 14(4): 243-267.
[12] YANG H, RAHARDJO H, LEONG E C, et al. A study of infiltration on three sand capillary barriers[J]. Canadian Geotechnical Journal, 2004, 41(4): 629-643. doi: 10.1139/t04-021
[13] CUDE S M, ANKENY M D, NORTON J B, et al. Capillary barriers improve reclamation in drastically disturbed semiarid shrubland[J]. Arid Land Research and Management, 2018, 32(3): 259-276. doi: 10.1080/15324982.2018.1448903
[14] NIU Q, FRATTA D, WANG Y H. The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils[J]. Journal of Hydrology, 2015, 522: 475-487. doi: 10.1016/j.jhydrol.2014.12.055
[15] BARBOUR S L, HENDRY M J, CAREY S K. High-resolution profiling of the stable isotopes of water in unsaturated coal waste rock[J]. Journal of Hydrology, 2016, 534: 616-629. doi: 10.1016/j.jhydrol.2016.01.053
[16] 张志军, 李亚俊, 贺桂成, 等. 某尾矿坝毛细水带内的坝体材料物理力学特性研究[J]. 岩土力学, 2014, 35(6): 1561-1568. doi: 10.16285/j.rsm.2014.06.028 ZHANG Zhi-jun, LI Ya-jun, HE Gui-cheng, et al. Study of physico-mechanical properties of dam body materials in capillary water fringe of a certain tailings dam[J]. Rock and Soil Mechanics, 2014, 35(6): 1561-1568. (in Chinese) doi: 10.16285/j.rsm.2014.06.028
[17] DOBRIYAL P, QURESHI A, BADOLA R, et al. A review of the methods available for estimating soil moisture and its implications for water resource management[J]. Journal of Hydrology, 2012, 458: 110-117.
[18] SU S L, SINGH D N, BAGHINI M S. A critical review of soil moisture measurement[J]. Measurement, 2014, 54: 92-105. doi: 10.1016/j.measurement.2014.04.007
[19] YIN Z, LEI T, YAN Q, et al. A near-infrared reflectance sensor for soil surface moisture measurement[J]. Computers and Electronics in Agriculture, 2013, 99: 101-107. doi: 10.1016/j.compag.2013.08.029
[20] CAO D, SHI B, ZHU H, et al. A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(6): 700-707. doi: 10.1016/j.jrmge.2015.08.003
[21] 郝瑞, 施斌, 曹鼎峰, 等. 基于 AHFO 技术的毛细水运移模型验证试验研究[J]. 岩土工程学报, 2019, 41(2): 376-382. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902019.htm HAO Rui, SHI Bin, CAO Ding-feng, et al. Experimental study on capillary water transport model based on AHFO technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 376-382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902019.htm
[22] CAO D, SHI B, ZHU H, et al. Performance evaluation of two types of heated cables for distributed temperature sensing-based measurement of soil moisture content[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(2): 212-217. doi: 10.1016/j.jrmge.2015.09.005
[23] CAO D, SHI B, WEI G, et al. An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers[J]. Measurement, 2018, 123: 175-184. doi: 10.1016/j.measurement.2018.03.052
[24] 曹鼎峰, 施斌, 顾凯, 等. 土的含水率 AHFO 法测量中分段函数模型建立[J]. 水文地质工程地质, 2016, 43(6): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606007.htm CAO Ding-feng, SHI Bin, GU Kai, et al. Establishment of the piecewise function model in the process of soil moisture monitoring with the AHFO method[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 41-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606007.htm
[25] LU N, LIKOS W. Unsaturated Soil Mechanics[M]. New York: John Wiley & Sons, Inc, 2004.
[26] KODEŠOVÁ R, KODEŠ V, MRAZ A. Comparison of two sensors ECH2O EC-5 and SM200 for measuring soil water content[J]. Soil and Water Research, 2011, 6(2): 102-110. doi: 10.17221/6/2011-SWR
[27] DECAGON. EC-5 Volumetric Water Content Sensor: Manual[EB/OL]. 2015.
[28] 董翰川, 庞丽丽, 史云. 频域反射分析法测定土壤含水率标定试验研究[J]. 水文地质工程地质, 2019, 46(3): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903008.htm DONG Han-chuan, PANG Li-li, SHI Yun. An experimental study of calibration of soil moisture content by using the frequency domain reflectometry[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 55-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903008.htm
[29] HILHORST M A, BALENDONCK J, KAMPERS F W H. A broad-bandwidth mixed analog/digital integrated circuit for the measurement of complex impedance[J]. IEEE Journal of Solid-state Circuits, 1993, 28(7): 764-769.
[30] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[31] 段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管 FBG 渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm DUAN Chao-zhe, SHI Bin, CAO Ding-feng, et al. A quasi-distributed velocity monitoring method using FBG embedded in internal heated alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504-510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803014.htm
[32] HSU S Y, HUANG V, PARK S W, et al. Water infiltration into prewetted porous media: dynamic capillary pressure and Green-Ampt modeling[J]. Advances in Water Resources, 2017, 106: 60-67.
[33] DE VRIES D A. Thermal Properties of Soil. In ‘Physics of Plant Environment’[M]. Amsterdam: North-Holland Publishing Company, 1963: 210-235.
[34] BRISTOW K L. 5.3 Thermal conductivity[J]. Methods of Soil Analysis: Part 4 Physical Methods, 2002(5): 1209-1226.
[35] 曹鼎峰, 施斌, 严珺凡, 等. 基于 C-DTS 的土壤含水率分布式测定方法研究[J]. 岩土工程学报, 2014, 36(5): 910-915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm CAO Ding-feng, SHI Bin, YAN Jun-fan, et al. Distributed method for measuring moisture content of soils based on C-DTS[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 910-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405021.htm
[36] BENÍTEZ-BUELGA J, SAYDE C, RODRÍGUEZ-SINOBAS L, et al. Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach[J]. Vadose Zone Journal, 2014, 13(11): 1-12.
[37] WU J, SHI B, CAO D, et al. Model test of soil deformation response to draining-recharging conditions based on DFOS[J]. Engineering Geology, 2017, 226: 107-121.
[38] LIU S, SHI B, GU K, et al. Land subsidence monitoring in sinking coastal areas using distributed fiber optic sensing: a case study[J]. Natural Hazards, 2020, 103: 3043-3061.