DEM analysis of evolution law of bond degradation for structured soils
-
摘要: 结构性土体通常指粒间含有胶结的土体,可看成一种特殊的胶结颗粒材料,探明结构性土体的胶结破损演化规律是加深结构性土体宏微观力学性质认识及建立结构性土本构模型的关键。由于试验手段难以定量获取胶结破损信息,通过离散单元法分析了结构性土体的胶结破损演化规律。首先采用相对完备的胶结接触模型建立了结构性土体离散元试样,接触模型考虑了颗粒及胶结物质的抗转动和抗扭转作用以及胶结尺寸对刚度和强度的影响;然后开展了结构性土侧限压缩、等向压缩、等应力比压缩以及常规三轴和真三轴试验的离散元数值分析,再现了结构性土的主要宏观力学特征;在此基础上的胶结破损演化分析表明胶结破损参量B0演化具有明显的应力路径相关性,而新提出的破损参量Bσ应力路径相关性低,通过Bσ与等效塑性应变的指数函数关系,可以描述结构性土体的胶结破损演化情况。
-
关键词:
- 结构性土 /
- 胶结颗粒材料(理想结构性土) /
- 离散单元法 /
- 胶结破损演化 /
- 本构模型
Abstract: The evolution of bond degradation is essential for analyzing the macro-and micro-scopic behaviors and establishing constitutive models for structured soils with cementation bond which is a kind of bonded granular material. The discrete element method is employed to analyze the evolution of bond degradation on account of the disadvantage of laboratory tests in bond breakage quantitative analysis. First, the discrete numerical sample is generated by installing a relatively completed bond contact model incorporating the interparticle rolling and twisting resistances and the influences of bond size on the contact stiffness and strength. The DEM simulation reproduces the key mechanical behaviors of one-dimensional compression, isotropic and anisotropic compressions, conventional triaxial and true triaxial tests on the DEM sample. The results show that the evolution of the degradation variable B0 is stress-path-dependent, while a new degradation variable Bσ is roughly stress-path-independent. An exponential function is recommended for Bσto describe the degradation of soil structure. -
-
-
[1] BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378. doi: 10.1680/geot.1990.40.3.329
[2] LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-488. doi: 10.1680/geot.1990.40.3.467
[3] DAFALIAS Y F, POPOV E P. A model of nonlinearly hardening materials for complex loading[J]. Acta Mechanica, 1975, 21(3): 173-192. doi: 10.1007/BF01181053
[4] HASHIGUCHI K. Subloading surface model in unconventional plasticity[J]. International Journal of Solids and Structures, 1989, 25(8): 917-945. doi: 10.1016/0020-7683(89)90038-3
[5] YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
[6] NOVA R, CASTELLANZA R, TAMAGNINI C. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(9): 705-732. doi: 10.1002/nag.294
[7] ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000,40(2): 99-110. doi: 10.3208/sandf.40.2_99
[8] DESAI C S, TOTH J. Disturbed state constitutive modeling based on stress-strain and nondestructive behavior[J]. International Journal of Solids and Structures, 1996, 33(11): 1619-1650. doi: 10.1016/0020-7683(95)00115-8
[9] 沈珠江. 结构性黏土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15(3): 21-28. doi: 10.3321/j.issn:1000-4548.1993.03.003 SHEN Zhu-jiang. An elasto-plastic damage model for cemented clays[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 21-28. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.03.003
[10] JIANG M J, ZHANG F G, SUN Y G. An evaluation on the degradation evolutions in three constitutive models for bonded geomaterials by DEM analyses[J]. Computers and Geotechnics, 2014, 57: 1-16. doi: 10.1016/j.compgeo.2013.12.008
[11] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
[12] 蒋明镜, 刘静德, 孙渝刚. 基于微观破损规律的结构性土本构模型[J]. 岩土工程学报, 2013, 35(6): 1134-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm JIANG Ming-jing, LIU Jing-de, SUN Yu-gang. Constitutive model for structured soils based on microscopic damage law[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1134-1139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm
[13] 蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019,41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
[14] JIANG M J, SHEN Z F, WANG J F. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011
[15] 蒋明镜, 孙若晗, 李涛, 等. 一个非饱和结构性黄土三维胶结接触模型[J]. 岩土工程学报, 2019, 41(S2): 213-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1055.htm JIANG Ming-jing, SUN Ruo-han, LI Tao, et al. A three-dimensional cementation contact model for unsaturated structural loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 213-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1055.htm
[16] ITASCA Consulting Group. Inc. Manual of partied flow code version 5.0[M]. 2014.
[17] SHEN Z F, JIANG M J, WAN R. Numerical study of inter- particle bond failure by 3D discrete element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(4): 523-545. doi: 10.1002/nag.2414
[18] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
[19] YU A B. Discrete element method: an effective way for particle scale research of particulate matter[J]. Engineering Computations, 2004, 21(2/3/4): 205-214.
[20] 胡再强. 黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D]. 西安: 西安理工大学, 2000. HU Zai-qiang. Inundation Deformation Test and Numerical Analysis on Loess Structural Model and Loess Canal[D]. Xi'an: Xi'an University of Technology, 2000. (in Chinese)
[21] MACCARINI M. Laboratory Studies of Weakly Bonded Artificial Soil[D]. London: University of London, 1987.
[22] 张鹏. 非饱和黄土力学特性与剪切带的真三轴试验及离散元模拟研究[D]. 上海: 同济大学, 2018. ZHANG Peng. True Triaxial Experimental and DEM Analysis of the Mechanical Properties and Shear Band of Unsaturated loess[D]. Shanghai: Tongji University, 2018. (in Chinese)
[23] REDDY K R, SAXENA S K. Effects of cementation on stress-train and strength characteristics of sands[J]. Soils and Foundations, 1993, 33(4): 121-134.
[24] MEHRABADI M M, NEMAT-NASSER S, ODA M. On statistical description of stress and fabric in granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6(1): 95-108.
[25] BAGI K. Stress and strain in granular assemblies[J]. Mechanics of Materials, 1996, 22(3): 165-177.