• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

多种应力路径下结构性土胶结破损演化规律离散元分析

李涛, 蒋明镜, 孙若晗

李涛, 蒋明镜, 孙若晗. 多种应力路径下结构性土胶结破损演化规律离散元分析[J]. 岩土工程学报, 2020, 42(6): 1159-1166. DOI: 10.11779/CJGE202006022
引用本文: 李涛, 蒋明镜, 孙若晗. 多种应力路径下结构性土胶结破损演化规律离散元分析[J]. 岩土工程学报, 2020, 42(6): 1159-1166. DOI: 10.11779/CJGE202006022
LI Tao, JIANG Ming-jing, SUN Ruo-han. DEM analysis of evolution law of bond degradation for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1159-1166. DOI: 10.11779/CJGE202006022
Citation: LI Tao, JIANG Ming-jing, SUN Ruo-han. DEM analysis of evolution law of bond degradation for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1159-1166. DOI: 10.11779/CJGE202006022

多种应力路径下结构性土胶结破损演化规律离散元分析  English Version

基金项目: 

国家自然科学基金项目 51809193

国家自然科学基金项目 51890911

国家自然科学基金项目 51579178

中国博士后科学基金项目 2018M631741

土木工程防灾国家重点实验室重点项目 SLDRCE19-A-06

详细信息
    作者简介:

    李涛(1985—),男,博士,讲师,主要从事非饱和土和结构性土体数值模拟和宏微观力学性质研究。E-mail: letllejn@163.com

    通讯作者:

    蒋明镜, mingjing.jiang@tju.edu.cn

  • 中图分类号: TU43

DEM analysis of evolution law of bond degradation for structured soils

  • 摘要: 结构性土体通常指粒间含有胶结的土体,可看成一种特殊的胶结颗粒材料,探明结构性土体的胶结破损演化规律是加深结构性土体宏微观力学性质认识及建立结构性土本构模型的关键。由于试验手段难以定量获取胶结破损信息,通过离散单元法分析了结构性土体的胶结破损演化规律。首先采用相对完备的胶结接触模型建立了结构性土体离散元试样,接触模型考虑了颗粒及胶结物质的抗转动和抗扭转作用以及胶结尺寸对刚度和强度的影响;然后开展了结构性土侧限压缩、等向压缩、等应力比压缩以及常规三轴和真三轴试验的离散元数值分析,再现了结构性土的主要宏观力学特征;在此基础上的胶结破损演化分析表明胶结破损参量B0演化具有明显的应力路径相关性,而新提出的破损参量Bσ应力路径相关性低,通过Bσ与等效塑性应变的指数函数关系,可以描述结构性土体的胶结破损演化情况。
    Abstract: The evolution of bond degradation is essential for analyzing the macro-and micro-scopic behaviors and establishing constitutive models for structured soils with cementation bond which is a kind of bonded granular material. The discrete element method is employed to analyze the evolution of bond degradation on account of the disadvantage of laboratory tests in bond breakage quantitative analysis. First, the discrete numerical sample is generated by installing a relatively completed bond contact model incorporating the interparticle rolling and twisting resistances and the influences of bond size on the contact stiffness and strength. The DEM simulation reproduces the key mechanical behaviors of one-dimensional compression, isotropic and anisotropic compressions, conventional triaxial and true triaxial tests on the DEM sample. The results show that the evolution of the degradation variable B0 is stress-path-dependent, while a new degradation variable Bσ is roughly stress-path-independent. An exponential function is recommended for Bσto describe the degradation of soil structure.
  • 土工测试专业委员会自成立以来,开展了一系列的学术研讨活动,迄今已举办30届全国土工测试学术研讨会。进入21世纪以来,因气候变化和全球变暖导致极端气候事件增多,暴雨、滑坡、泥石流等自然灾害频发,给岩土工程建设和土工测试技术带来了前所未有的挑战,在对环境保护、可持续发展和数字经济越来越重视的趋势下,工程建设需要更加精准地评估岩土参数,对土工测试技术的发展提出了更高要求。

    土工测试技术的发展不仅能够促进岩土工程设计的优化,也能够推动岩土工程理论的创新。为促进相互交流学习,第30届全国土工测试学术研讨会围绕土的基本性质测试、土工物理模型测试、土工原位测试、现场土工监测、环境土工测试、特殊土测试等方面进行了广泛的学术交流。

    第30届全国土工测试学术研讨会于2023年8月18—20日在北京召开,会议由中国土木工程学会土力学及岩土工程分会和中国水利学会岩土力学专业委员会共同主办,中国水利水电科学研究院、南京水利科学研究院、长江科学院等14家单位承办。会议筹办期间共收到110篇学术论文,经审稿委员会审议向《岩土工程学报》(增刊)荐论文56篇。同时,本届研讨会举办了细粒土三轴压缩平行试验,共收到19家单位的试验成果。本次会议以“探索•创新”为主题,会议设主会场1个,分会场4个,参会报名约60家单位,共组织特邀报告24个、主题报告64个。论文和报告涉及内容丰富,既有对学科基础理论的深入探讨,又有针对工程实践的案例分析和经验总结,这种跨学科的研讨有力地推动了土工测试领域的发展。

    感谢对本届会议的召开鼎力相助的中国水利水电科学研究院及各有关单位,感谢向本届会议投稿并对因疫情而延期表示理解的各位专家和同行,感谢审稿专家对本次会议审稿工作的辛勤付出。尤其是《岩土工程学报》编辑部,为使本届会议的论文集面世,做了大量工作,专门编辑出版了本期增刊,特此表示感谢。

    第30届全国土工测试学术研讨会组委会

  • 图  1   胶结刚度计算示意图

    Figure  1.   Schematic diagram for calculation of bond stiffness

    图  2   离散元试样及其粒径级配

    Figure  2.   DEM sample and grain-size distribution curve

    图  3   结构性土压缩性质

    Figure  3.   Compression properties of structured soils

    图  4   结构性土常规三轴剪切性质

    Figure  4.   Conventional triaxial test results of structured soils

    图  5   结构性土真三轴剪切性质

    Figure  5.   True triaxial test results of structured soils

    图  6   不同应力路径下破损参量B0随塑性体应变和塑性偏应变的演化规律

    Figure  6.   Evolution of degradation variable B0 versus plastic volumetric and deviator strain for DEM sample under different stress paths

    图  7   不同应力路径下破损参量B0随等效塑性应变的演化规律

    Figure  7.   Evolution of degradation variable B0 versus equivalent plastic strain for DEM sample under different stress paths

    图  8   不同应力路径下破损参量Bσ随等效塑性应变的演化规律

    Figure  8.   Evolution of degradation variable Bσversus equivalent plastic strain for DEM sample under different stress paths

  • [1]

    BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378. doi: 10.1680/geot.1990.40.3.329

    [2]

    LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-488. doi: 10.1680/geot.1990.40.3.467

    [3]

    DAFALIAS Y F, POPOV E P. A model of nonlinearly hardening materials for complex loading[J]. Acta Mechanica, 1975, 21(3): 173-192. doi: 10.1007/BF01181053

    [4]

    HASHIGUCHI K. Subloading surface model in unconventional plasticity[J]. International Journal of Solids and Structures, 1989, 25(8): 917-945. doi: 10.1016/0020-7683(89)90038-3

    [5]

    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029

    [6]

    NOVA R, CASTELLANZA R, TAMAGNINI C. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(9): 705-732. doi: 10.1002/nag.294

    [7]

    ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000,40(2): 99-110. doi: 10.3208/sandf.40.2_99

    [8]

    DESAI C S, TOTH J. Disturbed state constitutive modeling based on stress-strain and nondestructive behavior[J]. International Journal of Solids and Structures, 1996, 33(11): 1619-1650. doi: 10.1016/0020-7683(95)00115-8

    [9] 沈珠江. 结构性黏土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15(3): 21-28. doi: 10.3321/j.issn:1000-4548.1993.03.003

    SHEN Zhu-jiang. An elasto-plastic damage model for cemented clays[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 21-28. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.03.003

    [10]

    JIANG M J, ZHANG F G, SUN Y G. An evaluation on the degradation evolutions in three constitutive models for bonded geomaterials by DEM analyses[J]. Computers and Geotechnics, 2014, 57: 1-16. doi: 10.1016/j.compgeo.2013.12.008

    [11]

    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47

    [12] 蒋明镜, 刘静德, 孙渝刚. 基于微观破损规律的结构性土本构模型[J]. 岩土工程学报, 2013, 35(6): 1134-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm

    JIANG Ming-jing, LIU Jing-de, SUN Yu-gang. Constitutive model for structured soils based on microscopic damage law[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1134-1139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm

    [13] 蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019,41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    [14]

    JIANG M J, SHEN Z F, WANG J F. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011

    [15] 蒋明镜, 孙若晗, 李涛, 等. 一个非饱和结构性黄土三维胶结接触模型[J]. 岩土工程学报, 2019, 41(S2): 213-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1055.htm

    JIANG Ming-jing, SUN Ruo-han, LI Tao, et al. A three-dimensional cementation contact model for unsaturated structural loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 213-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1055.htm

    [16]

    ITASCA Consulting Group. Inc. Manual of partied flow code version 5.0[M]. 2014.

    [17]

    SHEN Z F, JIANG M J, WAN R. Numerical study of inter- particle bond failure by 3D discrete element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(4): 523-545. doi: 10.1002/nag.2414

    [18]

    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8

    [19]

    YU A B. Discrete element method: an effective way for particle scale research of particulate matter[J]. Engineering Computations, 2004, 21(2/3/4): 205-214.

    [20] 胡再强. 黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D]. 西安: 西安理工大学, 2000.

    HU Zai-qiang. Inundation Deformation Test and Numerical Analysis on Loess Structural Model and Loess Canal[D]. Xi'an: Xi'an University of Technology, 2000. (in Chinese)

    [21]

    MACCARINI M. Laboratory Studies of Weakly Bonded Artificial Soil[D]. London: University of London, 1987.

    [22] 张鹏. 非饱和黄土力学特性与剪切带的真三轴试验及离散元模拟研究[D]. 上海: 同济大学, 2018.

    ZHANG Peng. True Triaxial Experimental and DEM Analysis of the Mechanical Properties and Shear Band of Unsaturated loess[D]. Shanghai: Tongji University, 2018. (in Chinese)

    [23]

    REDDY K R, SAXENA S K. Effects of cementation on stress-train and strength characteristics of sands[J]. Soils and Foundations, 1993, 33(4): 121-134.

    [24]

    MEHRABADI M M, NEMAT-NASSER S, ODA M. On statistical description of stress and fabric in granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6(1): 95-108.

    [25]

    BAGI K. Stress and strain in granular assemblies[J]. Mechanics of Materials, 1996, 22(3): 165-177.

图(8)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  54
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-05-31

目录

    /

    返回文章
    返回