• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

玄武岩纤维加筋黏土的剪切强度特性

高磊, 胡国辉, 杨晨, 相超, 傅钧义, 徐楠

高磊, 胡国辉, 杨晨, 相超, 傅钧义, 徐楠. 玄武岩纤维加筋黏土的剪切强度特性[J]. 岩土工程学报, 2016, 38(zk1): 231-237. DOI: 10.11779/CJGE2016S1043
引用本文: 高磊, 胡国辉, 杨晨, 相超, 傅钧义, 徐楠. 玄武岩纤维加筋黏土的剪切强度特性[J]. 岩土工程学报, 2016, 38(zk1): 231-237. DOI: 10.11779/CJGE2016S1043
GAO Lei, HU Guo-hui, YANG Chen, XIANG Chao, FU Jun-yi, XU Nan. Shear strength characteristics of basalt fiber-reinforced clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 231-237. DOI: 10.11779/CJGE2016S1043
Citation: GAO Lei, HU Guo-hui, YANG Chen, XIANG Chao, FU Jun-yi, XU Nan. Shear strength characteristics of basalt fiber-reinforced clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 231-237. DOI: 10.11779/CJGE2016S1043

玄武岩纤维加筋黏土的剪切强度特性  English Version

基金项目: 高等学校博士学科点专项科研基金新教师类资助课题(20120094120015); 江苏省自然科学基金项目(BK20130832); 国家自然科学基金项目(51508159)
详细信息
    作者简介:

    高 磊(1984- ),男,汉族,宁夏银川人,博士,讲师,主要从事岩土和地质工程方面的研究。E-mail: taiyang360@gmail.com。

Shear strength characteristics of basalt fiber-reinforced clay

  • 摘要: 为了了解玄武岩纤维加筋黏土的剪切强度特性,将玄武岩纤维丝均匀地掺入黏土中,在控制含水率和干密度的条件下,进行了直剪试验,并借助扫描电镜,从微观层面对剪切面上的土体进行了观察。试验中,按纤维与干土质量的百分比0.0%,0.15%,0.25%,0.35%配制了试样,并从400 kPa压力下的剪切面中选取代表性土样进行微观测试。直剪试验结果表明:随着纤维掺量的增加,土样的黏聚力c不断增大;和素土相比,在掺量不超过0.25%时,加筋土样的内摩擦角φ变化不大,当掺量达到0.35%时,内摩擦角φ有突然且较为显著的增大。SEM结果表明:掺量为0.25%时,纤维在土体中的离散程度最高,纤维与土体间的作用方式主要为握裹作用和纤维网作用;剪切过程中,纤维在土体中易发生滑移和磨损,其中玄武岩纤维的磨损不同于其它纤维,主要表现为端部的磨损,表面仍较为平整。
    Abstract: To study the shear strength characteristics of basalt fiber-reinforced clay, a series of direct shear tests on clay reinforced by dispersed basalt fiber are performed under controlled water content and dry density conditions. With the application of scanning electron microscope (SEM), the soil particles on shear surface are investigated at micro level. The ratio of fiber content to dry soil by weight is 0. 0%,0. 15%,0. 25% and 0. 35%. And the representative soil samples are selected from shear surface under stress of 400 kPa for micro tests. The experimental results show that the inclusion of basalt fiber in clay can enhance the cohesive stress of soil, which increases with the increasing fiber content. Compared with that of pure soil, the internal friction angle of basalt fiber-reinforced clay changes little when the content is not higher than 0.25%. But when the content reaches 0.35%, the internal friction angle increases abruptly. At micro level, the dispersion of fiber in soil is the highest when the content is 0.25%. The interfacial interaction between fiber and soil particles mainly includes gripping effect of single fiber and fiber-net effect. The fiber on the shear surface may be either slipped or broken during shear, which the breaking of basalt fiber is different from that of other fibers. The ends of fiber are mainly broken, while the surface is smooth.
  • [1] 王德银, 唐朝生, 李 建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933-1939. (WANG De-yin, TANG Chao-sheng, LI Jian, et al. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933-1939. (in Chinese))
    [2] JAMEI M P, GUIRAS H. Shear failure criterion based on experimental and modeling results for fiber-reinforced clay[J]. Int J Geomech, 2013, 13(6): 882-893.
    [3] 刘宝生, 唐朝生, 李 建, 等. 纤维加筋土工程性质研究进展[J]. 工程地质学报, 2013, 21(4): 540-547. (LIU Bao-sheng, TANG Chao-sheng, LI Jian, et al. Advances in engineering properties of fiber reinforced soil[J]. Journal of Engineering Geology, 2013, 21(4): 540-547. (in Chinese))
    [4] 王 磊, 朱 斌, 李俊超, 等. 一种纤维加筋土的两相本构模型[J]. 岩土工程学报, 2014, 36(7): 1326-1333. (WANG Lei, ZHU Bin, LI Jun-chao, et al. A constitutive model for fiber reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1326-1333. (in Chinese))
    [5] 李广信, 陈 轮, 郑继勤, 等. 纤维加筋黏性土的试验研究[J]. 水利学报, 1995(6):31-36. (LI Guang-xin, CHEN Lun, ZHENG Ji-qin, et al. Experimental study on fiber-reinforced cohesive soil[J]. Journal of Hydraulic Engineering, 1995(6): 31-36. (in Chinese))
    [6] FATAHI Behzad, FATAHI Behnam, LE T M, et al. Small-strain properties of soft clay treated with fibre and cement[J]. Geosynthetics International, 2013, 20(4): 286-300.
    [7] FALORCA I M C F G, PINTO M I M. Effect of short, randomly distributed, polypropylene microfibres on shear strength behaviour of soils[J]. Geosynthetics International, 2011, 18(1): 2-11.
    [8] 李 建, 唐朝生, 王德银, 等. 基于单根纤维拉拔试验的波形纤维加筋土界面强度研究[J]. 岩土工程学报, 2014, 36(9): 1696-1704. (LI Jian, TANG Chao-sheng, WANG De-yin, et al. Single fiber pullout tests on interfacial shear strength of wave-shape fiber-reinforced soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1696-1704. (in Chinese))
    [9] 高 磊, 胡国辉, 徐 楠, 等. 玄武岩纤维工程性质研究进展[J]. 地下空间与工程学报, 2014, 10(增刊2): 1749-1754. (GAO Lei, HU Guo-hui, XU Nan, et al. Advances in research on engineering properties of basalt fiber[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(S2):1749-1754. (in Chinese))
    [10] 林希宁, 张凤林, 周玉梅. 玄武岩纤维及其复合材料的研究进展[J]. 玻璃纤维, 2013(2): 39-44. (LIN Xi-ning, ZHANG Feng-lin, ZHOU Yu-mei. Progress of research on basalt fiber and composites[J]. Fiber Glass, 2013(2): 39-44. (in Chinese))
    [11] 陈 峰, 陈 欣. 玄武岩纤维高性能混凝土力学性能正交试验研究[J]. 土木工程与管理学报, 2013, 30(6): 6-10. (CHEN Feng, CHEN Xin. Orthogonal experimental research on strength of high-performance concrete reinforced by basalt fiber[J]. Journal of Civil Engineering and Management, 2013, 30(6): 6-10. (in Chinese))
    [12] WELKER AL, JOSTEN N. Interface friction of a geomembrane with a fiber reinforced soil[C]// Conference Proceedings Geo-technical Special Publication, Geo- Frontiers. Austin, 2005: 2 903-2 910.
    [13] 蔡华南, 申俊敏, 赵健斌, 等. 纤维加筋黄土抗剪特性研究[J]. 交通科技, 2013(3): 129-132. (CAI Hua-nan, SHEN Jun-min, ZHAO Jian-bin, et al. Research on shear properties of fiber-reinforced loess[J]. Transportation Science & Technology, 2013(3): 129-132. (in Chinese))
    [14] CRISTELO N, CUNHA V M C F, DIAS M, et al. Influence of discrete fibre reinforcement on the uniaxial compression response and seismic wave velocity of a cement-stabilised sandy-clay[J]. Geotextiles & Geomembranes, 2015, 43(1): 1-13.
    [15] O Plé, T N H Lê. Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay[J]. Geotextiles & Geomembranes, 2012, 32(2): 111-116.
    [16] XU L, CHAI S, WEI H. Relationship between electrical resistivity and direct shear strength of basalt residual soil[J]. Geotechnical Investigation & Surveying, 2013(10): 10-16.
    [17] 唐朝生, 施 斌, 顾 凯. 纤维加筋土中筋/土界面相互作用的微观研究[J]. 工程地质学报,2011, 19(4): 610-614. (TANG Chao-sheng, SHI Bin, GU Kai. Microstructural study on interfacial interaction between fiber reinforcement and soil[J]. Journal of Engineering Geology, 2011, 19(4): 610-614. (in Chinese))
  • 期刊类型引用(8)

    1. 伊正男,张树光,漆文浩,范明卓,孙晔. 酸性溶液侵蚀红层软岩流固耦合蠕变特性分析. 矿业研究与开发. 2025(02): 171-183 . 百度学术
    2. 梁艳玲,霍润科,宋战平,穆彦虎,秋添,宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型. 材料导报. 2024(08): 163-169 . 百度学术
    3. 孟津竹,陈四利,王军祥,张靖宇. 碳酸盐岩溶蚀效应及力学特性. 沈阳工业大学学报. 2024(03): 353-360 . 百度学术
    4. CHEN Bowen,LI Qi,TAN Yongsheng,Ishrat Hameed ALVI. Dissolution and Deformation Characteristics of Limestones Containing Different Calcite and Dolomite Content Induced by CO_2-Water-Rock Interaction. Acta Geologica Sinica(English Edition). 2023(03): 956-971 . 必应学术
    5. 张研,王峻峰,付闵洁,叶玉龙. 酸性干湿循环灰岩单轴压缩细观劣化三维离散元分析. 金属矿山. 2023(12): 42-49 . 百度学术
    6. 田洪义,王华,司景钊. 酸性溶液对花岗岩力学特性及微观结构的影响. 隧道建设(中英文). 2022(01): 57-65 . 百度学术
    7. 陈传平. 灰岩三轴循环力学特性及能量演化特征试验研究. 石家庄铁道大学学报(自然科学版). 2022(02): 67-73 . 百度学术
    8. 胡维. 酸性环境下灰岩水岩作用阶段判定及依据. 山西建筑. 2022(23): 72-75 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数:  474
  • HTML全文浏览量:  3
  • PDF下载量:  294
  • 被引次数: 27
出版历程
  • 收稿日期:  2015-11-29
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回