• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于位错理论的饱和土渗流特性CPTU评价研究

邹海峰, 蔡国军, 刘松玉

邹海峰, 蔡国军, 刘松玉. 基于位错理论的饱和土渗流特性CPTU评价研究[J]. 岩土工程学报, 2014, 36(3): 519-528. DOI: 10.11779/CJGE201403015
引用本文: 邹海峰, 蔡国军, 刘松玉. 基于位错理论的饱和土渗流特性CPTU评价研究[J]. 岩土工程学报, 2014, 36(3): 519-528. DOI: 10.11779/CJGE201403015
ZOU Hai-feng, CAI Guo-jun, LIU Song-yu. Evaluation of coefficient of permeability of saturated soils based on CPTU dislocation theory[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 519-528. DOI: 10.11779/CJGE201403015
Citation: ZOU Hai-feng, CAI Guo-jun, LIU Song-yu. Evaluation of coefficient of permeability of saturated soils based on CPTU dislocation theory[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 519-528. DOI: 10.11779/CJGE201403015

基于位错理论的饱和土渗流特性CPTU评价研究  English Version

基金项目: 国家自然科学基金项目(41202203,41330641); 国家科技支撑计划项目(2012BAJ01B02); 教育部新世纪优秀人才支持计划(NCET-13-0118); 全国优秀博士学位论文作者专项资金项目(201353); 中央高校基本科研业务费资助项目(2242013R30014)
详细信息
    作者简介:

    邹海峰(1988- ),男,湖北天门人,博士研究生,主要从事现代原位测试孔压静力触探技术等方面的研究。Email: zhf0728@gmail.com。

    通讯作者:

    蔡国军

  • 中图分类号: TU413

Evaluation of coefficient of permeability of saturated soils based on CPTU dislocation theory

  • 摘要: 孔压静力触探(CPTU)测试数据通常用于土层划分和岩土工程设计参数评价。国际上CPTU测试技术的最新进展之一在于采用测得的锥尖阻力、侧壁摩阻力和孔隙水压力快速、连续地获得饱和土的渗透系数,以避免孔压消散试验费时的缺点。首先简要回顾了基于CPTU测试资料确定饱和土渗透系数的的研究成果,并进行了分析与改进,提出了基于位错理论和圆柱面径向流模型的水平向渗透系数预测新方法。选取典型场地进行了CPTU测试,并在黏性土场地采用薄壁取土器获得无扰动的原状试样,进行室内水平向渗透试验,在无黏性土场地进行现场钻孔抽水试验。以室内渗透试验和现场抽水试验的结果为参考,对3种基于CPTU连续评价饱和土渗透系数的方法进行了对比分析。研究表明,位错理论适用于评价饱和土的原位渗透系数,然而准确性与所采用的渗流模型有关。对国际标准CPTU探头,孔压过滤环位于锥肩(u2)位置时,采用圆柱面的径向流模型能够获得最为准确的水平向渗透系数预测结果,采用球面流或半球面流模型时趋于低估土层的渗透性。
    Abstract: The parameters obtained from measurements during piezocone penetration tests (CPTU) are commonly used for soil profiling and geostratigraphy as well as the assessment of geotechnical design. Since a dissipation test often takes significant time, efforts have been made to continuously evaluate the coefficient of permeability of saturated soils using the measured cone tip resistance, sleeve fiction and pore water pressure. In this study, the researches on evaluation of the coefficient of permeability of saturated soils are briefly reviewed and analyzed. Two novel methods based on the dislocation theory and the cylindrical flow model to estimate in-situ horizontal permeability are suggested. Piezocone penetration tests are conducted at typical sites. Horizontal permeability tests in laboratory on undisturbed samples of cohesive soils from high-quality thin-wall samplers and field pumping tests in borehole on cohesionless soils are also performed. A total of five methods are used to estimate the coefficient of permeability of soils, and the results are compared with those from laboratory and field tests. It is concluded that the values of coefficient of permeability evaluated from the proposed methods are more representative of the laboratory and field values than those evaluated using the available alternative methods. The dislocation theory can be used to estimate the coefficient of permeability of soils, but the accuracy depends on the flow model in porous media. For a standard cone with pore pressure element located at the shoulder of cone penetrometer (u2 position), the radial flow normal to a cylindrical surface can support the best prediction of in-situ permeability.
  • [1] 刘松玉, 吴燕开. 论我国静力触探技术(CPT)现状与发展[J]. 岩土工程学报, 2004, 26(4): 553-556. (LIU Song-yu, WU Yan-kai. On the state - of - art and development of CPT in China[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 553-556. (in Chinese))
    [2] LUNNE T, ROBERTSON P K, POWELL J J M. Cone penetration testing in geotechnical practice[M]. London: Chapman & Hall, 1997.
    [3] 蔡国军. 现代数字式多功能CPTU技术理论与工程应用研究[D]. 南京: 东南大学, 2010. (CAI Guo-jun. Study on theory and engineering application of digital multifunctional piezocone penetration test (CPTU) [D]. Nanjing: Southeast University, 2010. (in Chinese))
    [4] TORSTENSSON B A. The pore pressure probe[C]// Geotechnical Meeting, Norwegian Geotechnical Society. Oslo, 1977.
    [5] LEVADOUX J N, BALIGH M M. Consolidation after undrained piezocone penetration I: Prediction[J]. Journal of Geotechnical Engineering, ASCE, 1986, 112(7): 707-726.
    [6] BALIGH M M, LEVADOUX J N. Consolidation after undrained piezocone penetration II: Interpretation[J]. Journal of Geotechnical Engineering, ASCE, 1986, 112(7): 727-745.
    [7] HOULSBY G T, TEH C I. Analysis of the piezocone in clay[C]// Proceedings of the International Symposium on Penetration Testing, ISOPT-1. Orlando: Balkema Pub, Rotterdam, 1988, 2: 777-783.
    [8] BALIGH M M, LEVADOUX J N. Pore pressure dissipation after cone penetration[R]. Massachusetts: Massachusetts Institute of Technology, Department of Civil Engineering, Cambridge, Mass, R80-11. 1980.
    [9] 蔡国军, 刘松玉, 童立元, 等. 基于孔压静力触探的连云港海相黏土的固结和渗透特性研究[J]. 岩石力学与工程学报, 2007, 26(4): 846-857. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Study on consolidation and permeability properties of Lianyungang marine clay based on piezocone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 846-857. (in Chinese))
    [10] LEROUEIL S, JAMIOLKOWSKI M. Exploration of soft soil and determination of design parameters[C]// Proceedings GeoCoast’91, Yokohama, Japan, Port and Harbour Research Institute. Hasaki, 1991, 2: 969-998.
    [11] ROBERTSON P K, SULLY J P, WOELLER D J, LUNNE T, POWELL J J M, GILLESPIE D G. Estimating coefficient of consolidation from piezocone test[J]. Canadian Geotechnical Journal, 1992, 29(4): 539-550.
    [12] RANDOLPH M F, WROTH C P. An analytical solution for the consolidation around a driven pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(3): 217-229.
    [13] ROBERTSON P K. Estimating in-situ soil permeability from CPT&CPTU[C]// Proceedings of the 2nd International Symposium on Cone Penetration Testing (CPT’10). Huntington Beach, California, 2010: 535-542.
    [14] ELSWORTH D, LEE D S. Permeability determination from on-the-fly piezocone sounding[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 643-653.
    [15] ELSWORTH D, LEE D S. Limits in determining permeability from on-the-fly uCPT Sounding[J]. Géotechnique, 2007, 57(8): 769-685.
    [16] CHAI J C, AGUNG P M A, HINO T, et al. Estimation hydraulic conductivity from piezocone soundings[J]. Géotechnique, 2011, 61(8): 699-708.
    [17] CLEARY M P. Fundamental solutions for a fluid-saturated porous solid[J]. International Journal of Solids and Structures, 1977, 13: 785-806.
    [18] ELSWORTH D. Dislocation analysis of penetration in saturated porous media[J]. Journal of Engineering Mechanics, 1991, 117(2): 391-408.
    [19] ELSWORTH D. Analysis of piezocone data using dislocation based methods[J]. Journal of Geotechnical Engineering, 1993, 119(10): 1601-1623.
    [20] ISSMFE APPENDIX A. International reference test procedure for cone penetration test (CPT)[R]. Report of the ISSMFE Technical Committee on Penetration Testing of Soils—TC 16, with Reference to Test Procedures, Swedish Geotechnical Institute, Linköping, Information, 1989, 7: 6-16.
    [21] ROBERTSON P K, CAMPANELLA R G, GILLESPIE D, et al. Use of piezometer cone data[C]// Proceedings of the ASCE Specialty Conference In Situ’86: Use of In Situ Tests in Geotechnical Engineering. Blacksburg, 1986: 1263-1280.
    [22] WHITTLE A J, AUBENY C P. Pore pressure fields around piezocone penetrometers installed in clay[C]// Proceedings of the 7th International Conference on Computer Methods and Advances in Geomechanics. Cairns, 1991: 285-290.
    [23] SONG C R, VOYIADJIS G Z. Pore pressure response of saturated soils around a penetrating object[J]. Computers and Geotechnics, 2005, 32: 37-46.
    [24] DEJONG J T, JAEGER R A, BOULANGER R W, RANDOLPH M F, WAHL D A J. Variable penetration rate cone testing for characterization of intermediate soils[C]// Geotechnical and Geophysical Site Characterization 4, ISC 4, London: Taylor & Francis Group, 2013: 25-42.
    [25] YI J T, GOH S H, LEE F H, RANDOLPH M F. A numerical study of cone penetration in fine-grained soils allowing for consolidation effects[J]. Géotechnique, 2012, 62(8): 707-719.
    [26] GB/T 50145—2007 土的工程分类标准[S]. 北京: 中国计划出版社, 2008. (GB/T 50145—2007 Standard for engineering classification of soil[S]. Beijing: China Architecture and Building Press, 2008. (in Chinese))
    [27] SL 320—2005 水利水电工程钻孔抽水试验规程[S]. 北京: 中国水利水电出版社, 2005. (SL 320—2005 Code of pumping test in borehole for water resources and hydropower engineering[S]. Beijing: China Water Power Press, 2005. (in Chinese))
    [28] JAMIOLKOWSKI M, LADD C C, GERMAINE J T, et al. New developments in field and laboratory testing of soils[C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985: 57-153.
计量
  • 文章访问数:  484
  • HTML全文浏览量:  2
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-22
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回