• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

双向耦合循环剪切条件下饱和砂土体应变发展规律试验研究

赵凯, 吴琪, 熊浩, 茅文博, 陈国兴

赵凯, 吴琪, 熊浩, 茅文博, 陈国兴. 双向耦合循环剪切条件下饱和砂土体应变发展规律试验研究[J]. 岩土工程学报, 2019, 41(7): 1260-1269. DOI: 10.11779/CJGE201907010
引用本文: 赵凯, 吴琪, 熊浩, 茅文博, 陈国兴. 双向耦合循环剪切条件下饱和砂土体应变发展规律试验研究[J]. 岩土工程学报, 2019, 41(7): 1260-1269. DOI: 10.11779/CJGE201907010
ZHAO Kai, WU Qi, XIONG Hao, MAO Wen-bo, CHEN Guo-xing. Experimental investigations on volumetric strain behavior of saturated sands under bi-directional cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1260-1269. DOI: 10.11779/CJGE201907010
Citation: ZHAO Kai, WU Qi, XIONG Hao, MAO Wen-bo, CHEN Guo-xing. Experimental investigations on volumetric strain behavior of saturated sands under bi-directional cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1260-1269. DOI: 10.11779/CJGE201907010

双向耦合循环剪切条件下饱和砂土体应变发展规律试验研究  English Version

基金项目: 国家自然科学基金项目(51608267, 51438004); 国家重点研发计划项目(2017YFC15004003)
详细信息
    作者简介:

    赵 凯(1982— ),男,博士,副教授,主要从事土动力学方面的研究工作。E-mail: zhaokaiseu@aliyun.com。

  • 中图分类号: TU411

Experimental investigations on volumetric strain behavior of saturated sands under bi-directional cyclic loadings

  • 摘要: 砂土的剪胀与循环应力路径密切相关。针对饱和南京细砂,利用空心圆柱扭剪仪(HCA)进行了一系列均等固结条件下轴向-扭转耦合循环剪切排水试验,研究了复杂应力路径下饱和砂土的剪胀性及其体应变量化方法。研究表明:双向耦合循环剪切条件下饱和砂土的剪胀由一个完全可逆的循环体应变分量和一个不可逆的累积体应变分量构成,循环应力路径对累积体应变发展规律影响显著;以等效循环应力比ESR作为表征复杂应力路径下动应力大小的指标,饱和砂土累积体应变与ESR值具有事实上的唯一性关系,累积体应变随ESR的增加而线性累积;通过引入参数ESR,提出了双向耦合剪切条件下饱和砂土累积体应变规准化方法。验证性试验表明新的体应变增量模型的预测值与试验结果的吻合度较高,而基于循环直剪试验结果建立的Byrne模型对双向耦合剪切条件下饱和南京细砂的体应变预测偏小。
    Abstract: The dilatancy of sands highly depends on the cyclic stress path. A series of axial-torsional coupling shear tests are performed on the Nanjing fine sand under isotropically consolidated condition by using the hollow cyclic apparatus (HCA). The dilatant behavior of saturated sands is investigated under complex stress paths, using the correspondent mathematical model. The results are summarized as follows: the volumetric strain of sands is composed of a completely reversible component and an irreversible component. The cyclic stress path has significant effects on the development of the volumetric strain. The equivalent cyclic stress ratio (ESR), which is defined as the ratio of the mean value of the maximum shear stress in a loading cycle to the initial effective confining pressure, can be used as an index to quantitatively characterize the cyclic stress paths of the soil samples under bi-directional shear loadings. The volumetric strain increment may be uniquely correlated to the applied ESR, which accumulates linearly with the increase of ESR. By introducing ESR, a normalized incremental model for volumetric strain of the saturated sands under bi-directional shear loadings is proposed. Retrospective simulation of a laboratory test using the proposed model shows good agreement, calibrating the reliability of the model. However, the Byrne model based on the data of direct shear tests significantly underestimates the volumetric strain accumulation of the Nanjing fine sand under the axial-torsional coupling shear loadings.
  • [1] ISHIHARA K, TOWHATA I.Sand response to cyclic rotation of principal stress directions as induced by wave loads[J]. Soils and Foundations, 1983, 23(4): 11-26.
    [2] 王忠涛, 刘鹏, 杨庆. 非标准椭圆形应力路径下饱和松砂动强度的试验研究[J]. 岩土工程学报, 2016, 38(6): 1133-1139.
    (WANG Zhong-tao, LIU Peng, YANG Qing.Dynamic strength of saturated loose sand under nonstandard elliptical stress path[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1133-1139. (in Chinese))
    [3] 周晓智, 陈育民, 刘汉龙. 驻波作用下有限厚度海床动应力路径特性研究[J]. 岩土工程学报, 2018, 40(5): 890-899.
    (ZHOU Xiao-zhi, CHEN Yu-min, LIU Han-long.Study on characteristic of dynamic stress path of finite thickness seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 890-899. (in Chinese))
    [4] 黄博, 凌道盛, 丁浩, 等. 斜入射地震波在土体中产生的动应力路径及试验模拟[J]. 岩土工程学报, 2013, 35(2): 276-283.
    (HUANG Bo, LING Dao-sheng, DING Hao, et al.Seismic stress path induced by obliquely incident waves and its simulation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 276-283. (in Chinese))
    [5] SYMES M, GENS A, HIGHT D W.Undrained anisotropy and principal stress rotation in saturated sand[J]. Géotechnique, 1984, 34(1): 11-27.
    [6] 王洪瑾, 沈瑞福, 马奇国. 双向振动下土的动强度[J]. 清华大学学报(自然科学版), 1996, 36(4): 93-98.
    (WANG Hong-jin, SHEN Rui-fu, MA Qi-guo.Dynamic strength of soil under multi-direction loading[J]. Journal of Tsinghua University (Science and Technology), 1996, 36(4): 93-98. (in Chinese))
    [7] NAKATA Y, HYODO M, MURATA H, ET AL.Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998, 38(2): 115-128.
    [8] YANG Z X, LI X S, YANG J.Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371-384.
    [9] 栾茂田, 金丹, 张振东, 等. 饱和松砂的双向耦合剪切特性试验研究[J]. 岩土工程学报, 2009, 31(3): 319-325.
    (LUAN Mao-tian, JIN Dan, ZHANG Zhen-dong, et al.Liquefaction of sand under bi-directional cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 319-325. (in Chinese))
    [10] 李男, 黄博, 凌道盛, 等. 斜椭圆应力路径下饱和松砂动力特性试验研究[J]. 岩土力学, 2015, 36(1): 156-162.
    (LI Nan, HUANG Bo, LIN Dao-sheng, et al.Experimental research on behaviors of saturated loose sand subjected to oblique ellipse stress path[J]. Rock and Soil Mechanics, 2015, 36(1): 156-162. (in Chinese))
    [11] 许成顺, 高英, 杜修力, 等. 双向耦合剪切条件下饱和砂土动强度特性试验研究[J]. 岩土工程学报, 2014, 36(12). 2335-2340.
    (XU Cheng-shun, GAO Ying, DU Xiu-li, et al.Dynamic strength of saturated sand under bi-directional cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2335-2340. (in Chinese))
    [12] PAN H, CHEN G X, SUN T, et al.Characteristics of excess pore water pressure of Nanjing saturated fine sand under the interaction of wave and earthquake loading[J]. Marine Georesources & Geotechnology, 2012, 30(1): 32-51.
    [13] SYMES M J, GENS A, HIGHT D W.Drained principal stress rotation in saturated sand[J]. Géotechnique, 1988, 38(1): 59-81.
    [14] MIURA K, MIURA S, TOKI S.Deformation behavior of anisotropic dense sand under principal stress axes rotation[J]. Soils and Foundations, 1986, 26(1): 36-52.
    [15] GUTIERREZ M, ISHIHARA K, TOWHATA I.Flow theory for sand during rotation of principal strss direction[J]. Soils and Foundations, 1991, 31(4): 121-132.
    [16] 蔡燕燕, 俞缙, 余海岁, 等. 考虑主应力轴旋转的砂土变形特性试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 417-424.
    (CAI Yan-yan, YU Jin, YU Hai-sui, et al.Experimental study of deformation behavior of sand under rotation of principal strss axes[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 417-424. (in Chinese))
    [17] XIONG H, GUO L, CAI Y, et al.Experimental study of drained anisotropy of granular soils involving rotation of principal stress direction[J]. European Journal of Environmental and Civil Engineering, 2016, 20(4): 431-454.
    [18] 童朝霞, 张建民, 于艺林, 等. 中主应力系数对应力主轴循环旋转条件下砂土变形特性的影响[J]. 岩土工程学报, 2009, 31(6): 946-952.
    (TONG Zhao-xia, ZHANG Jian-min, YU Yi-min, et al.Effects of intermediate principal stress parameter on deformation behavior of under cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 946-952. (in Chinese))
    [19] 张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50.
    (ZHANG Jian-min.New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese))
    [20] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17.
    (ZHANG Jian-min.Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 12-17. (in Chinese))
    [21] ZIENKIEWICZ O C, CHANG C T, BETTESS P.Drained, undrained, consolidating and dynamic behavior assumptions in soils[J]. Géotechnique, 1980, 30(4): 385-395.
    [22] CHEN G X, ZHOU Z L, PAN H, et al.The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range[J]. Engineering Geology, 2016, 204: 77-93.
    [23] 黄博, 丁浩, 陈云敏. GDS 空心圆柱仪动力试验能力探讨[J]. 岩土力学, 2010, 31(2): 314-320.
    (HUANG Bo, DING Hao, CHEN Yun-min.Preliminary study of dynamic testing performance of hollow cylinder apparatus[J]. Rock and Soil Mechanics, 2010, 31(2): 314-320. (in Chinese))
    [24] 谢定义, 张建民. 周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型[J]. 土木工程学报, 1990, 23(2): 51-60.
    (XIE Ding-yi, ZHANG Jian-min.Research on transient change mechanism of pore water pressure in saturated sand under cyclic loading[J]. China Civil Engineering Journal, 1990, 23(2): 51-60. (in Chinese))
    [25] DUKU P M, STEWART J P, WHANG D H, et al.Volumetric strains of clean sands subject to cyclic loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(8): 1073-1085.
    [26] WICHTMANN T, NIEMUNIS A, TRIANTAFYLLIDIS T.Strain accumulation in sand due to cyclic loading: drained triaxial tests[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(12): 967-979.
    [27] YEE E, DUKU P M, STEWART J P.Cyclic volumetric strain behavior of sands with fines of low plasticity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 04013042.
    [28] TOKIMATSU K, SEED H B.Evaluation of settlements in sands due to earthquake shaking[J]. Journal of the Geotechnical Engineering, 1987, 113(8): 861-878.
    [29] HUANG B, CHEN X Y, ZHAO Y.A new index for evaluating liquefaction resistance of soil under combined cyclic shear stresses[J]. Engineering Geology, 2015, 199: 125-139.
    [30] IVSIC T.A model for presentation of seismic pore water pressures[J]. Soil Dynamics and Earthquake Engineering, 2006, 26: 191-199.
    [31] PARK T, PARK D, AHN J K.Pore pressure model based on accumulated stress[J]. Bulletin of Earthquake Engineering, 2015, 13: 1913-1926.
    [32] MARTIN G R, FINN W D L, SEED H B. Fundamentals of liquefaction under cyclic loading[J]. Journal of the Geotechnical Engineering, 1975, 101(5): 423-438.
    [33] BYRNE P M.A cyclic shear-volume coupling and pore pressure model for sand[C]//Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri, USA, 1991: 47-55.
    [34] AZADI M, MIR MOHAMMAD HOSSEINI S M. Analyses of the effect of seismic behavior of shallow tunnels in liquefiable grounds[J]. Tunnelling and Underground Space Technology, 2010, 25(5): 543-552.
    [35] 龙慧, 陈国兴, 庄海洋. 可液化地基上地铁车站结构地震反应特征有效应力分析[J]. 岩土力学, 2013, 34(6): 1731-1737.
    (LONG Hui, CHEN Guo-xing, ZHUANG Hai-yang.Effective stress analysis of seismic response characteristics of metro station structure in liquefiable foundation[J]. Rock and Soil Mechanics, 2013, 34(6): 1731-1737. (in Chinese))
    [36] ZHAO K, XIONG H, CHEN G, et al.Cyclic characterization of wave-induced oscillatory and residual response of liquefiable seabed[J]. Engineering Geology, 2017, 227(21): 32-42.
    [37] 赵丁凤, 梁珂, 陈国兴, 等. 剪切-体积应变耦合的孔压增量模型试验研究[J]. 岩土力学, 2019, 40(5): 1832-1840.
    (ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, et al.Experimental investigation on a new incremental excess pore pressure model characterized by cyclic shear-volume coupling[J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840. (in Chinese))
  • 期刊类型引用(2)

    1. 韩成,张康成,陈振宇,彭赐彩,张魁. 基于LS-DYNA的激光-TBM滚刀破岩仿真方法及试验验证. 力学与实践. 2025(01): 179-188 . 百度学术
    2. 汪鼎华,江彪,徐国强,张魁. 移动激光预切槽辅助TBM滚刀破岩的仿真研究. 陕西科技大学学报. 2024(06): 151-156+179 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  275
  • HTML全文浏览量:  9
  • PDF下载量:  162
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-04-09
  • 发布日期:  2019-07-24

目录

    /

    返回文章
    返回