• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩石的损伤、黏结和摩擦特性研究

尤明庆

尤明庆. 岩石的损伤、黏结和摩擦特性研究[J]. 岩土工程学报, 2019, 41(3): 554-560. DOI: 10.11779/CJGE201903018
引用本文: 尤明庆. 岩石的损伤、黏结和摩擦特性研究[J]. 岩土工程学报, 2019, 41(3): 554-560. DOI: 10.11779/CJGE201903018
YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. DOI: 10.11779/CJGE201903018
Citation: YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. DOI: 10.11779/CJGE201903018

岩石的损伤、黏结和摩擦特性研究  English Version

详细信息
    作者简介:

    尤明庆(1964-),男,博士,教授,主要从事岩石力学方面的教学与研究工作。E-mail:youmq@hpu.edu.cn。

Properties of damage, cohesion and friction of rocks

  • 摘要: 收集文献上多种完好及损伤后岩石的常规三轴压缩强度,研究材料的损伤、黏结和摩擦特性及其对围压与强度之间关系的影响。围压增大使裂隙的摩擦承载能力增大,若达到附近材料或其他弱面承载能力后则不再直接影响试样的强度;材料局部损伤的影响随着围压增大降低,试样承载的主应力差以指数形式趋于极限,即最大剪切力等于材料的真实黏结力。大理岩塑性变形引起局部剪切屈服,但真实黏结力没有降低;加热600℃足够长时间后造成使晶界完全开裂则引起真实黏结力降低。岩石剪切破坏时强度与围压的关系可用指数准则描述;不过,花岗岩在围压 20 MPa之内可出现沿轴向劈裂破坏而强度随围压线性增加。
    Abstract: The conventional triaxial compressive strengths of intact and damaged rocks are collected to study their properties of damage, cohesion and friction, and to reveal the influences of confining pressure on strength. The bearing capacity of a crack from friction increases with confining pressure, and the crack does not affect the strength of specimen when its bearing capacity achieves that of the materials or other cracks in neighborhood. The effect of localized damage on strength decreases with the increase of the confining pressure, and the difference of the principal stress is well fit to the exponential criterion. There is a limitation of the difference of the principal stress, or the maximum shear stress is equal to the genuine cohesion of rock materials. The genuine cohesion of marble is not influenced by the plastic deformation resulting from shear yield in the specimen, but it will decrease when the grain boundaries of the marble heated to 600℃ are seperated. The exponential criterion can describe the effect of the confining pressure on the strength of rock specimen in shear failure. However, the granite specimen compressed within the confining pressure of 20 MPa fails splitting along the axial direction, and the strength increases linearly with the confining pressure.
  • [1] GONZALEZ-GARCIA A J. Rock strength and failure: some common and uncommon issues[C]// Harmoning Rock Engineering and the Environment. Netherlands: CRC Press, 2012: 81-90.
    [2] 尤明庆. 常规三轴压缩的端部效应及花岗岩强度的研究[J]. 岩石力学与工程学报, 2018, 37(增刊1): 3160-3168.
    (YOU Ming-qing.Study on ends effect in conventional triaxial compression test and the strengths property of granites[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3160-3168. (in Chinese))
    [3] 谢璨, 李树忱, 晏勤, 等. 不同尺寸裂隙岩石损伤破坏特性光弹性试验研究[J]. 岩土工程学报, 2018, 40(3): 568-575.
    (XIE Can, LI Shu-chen, YAN Qin, et al.Photoelastic experimental study of failure characteristics of different size fractured rock[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 568-575. (in Chinese))
    [4] JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of rock mechanics[M]. New York: Wiley-Blackwell, 2007.
    [5] MOGI K. Experimental rock mechanics[M]. London: Taylor & Francis, 2007, 17-47: 66-110.
    [6] 尤明庆. 围压对岩石试样强度的影响及离散性[J]. 岩石力学与工程学报, 2014, 33(5): 929-937.
    (YOU Ming-qing.Study on effect of confining pressure on strength and the scatter of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 929-937. (in Chinese))
    [7] YOU M.Comparison of the accuracy of some conventional triaxial strength criteria for intact rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(5): 852-863.
    [8] YOU M.Comparison of two true-triaxial strength criteria[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 54: 114-124.
    [9] EBERHARDT E.ISRM suggested method: The Hoek-Brown failure criterion[J]. Rock Mechanics and Rock Engineering, 2012, 45(6): 981-988.
    [10] YOU M.True-triaxial strength criteria for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 115-127.
    [11] 李冰洋, 尤明庆. 岩石黏结摩擦特性及非线性强度的指数准则描述[J]. 岩石力学与工程学报, 2016, 35(10): 1945-1953.
    (LI Bing-yang, YOU Ming-qing.Study on nonlinear strength property of rocks with cohesion and friction using the exponential criterion[J]. Chinese Journal of Rock Mechanics and Engineering,2016, 35(10): 1945-1953. (in Chinese))
    [12] 张磊, 刘保国. 考虑抗拉强度的岩石强度准则对比分析[J]. 工程力学, 2016, 33(11): 201-207.
    (ZHANG Lei, LIU Bao-guo.A comparison study of rock strength criteria considering tensile strength[J]. Engineering Mechanics, 2016, 33(11): 201-207. (in Chinese))
    [13] 尤明庆, 吴秋红, 苏承东.花岗岩直板轴向压缩的分层破坏及围岩失稳探讨[J]. 岩石力学与工程学报, 2015, 34(11): 2346-2354.
    (YOU Ming-qing, WU Qiu-hong, SU Cheng-dong.Laminated failure of granite plates under axial compression and instability of surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2346-2354. (in Chinese))
    [14] 尤明庆. 单参数的正则抛物线准则[J]. 岩石力学与工程学报, 2012,31(8): 1580-1586.
    (YOU Ming-qing.Normal parabolic criterion with a single parameter[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1580-1586. (in Chinese))
    [15] 李冰洋, 尤明庆. 正则抛物线准则及岩石初始损伤的估计[J]. 岩土工程学报, 2015, 37(9): 1740-1744.
    (LI Bing-yang, YOU Ming-qing.Normal parabolic criterion and estimation to the initial damage of rock[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1740-1744. (in Chinese))
    [16] 汪斌, 朱杰兵, 邬爱清, 等. 高应力下岩石非线性强度特性的试验验证[J]. 岩石力学与工程学报, 2010, 29(3): 542-548.
    (WANG Bin, ZHU Jie-bing, WU Ai-qing, et al.Experimental validation of nonlinear strength property of rock under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 542-548. (in Chinese))
    [17] GOWD T N, RUMMEL F.Effect of confining pressure on the fracture behavior of a porous rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1980, 17(4): 225-229.
    [18] BIED A E, SULEM J, MARTINEAU F.Microstructure of shear zones in Fontainebleau sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(7): 917-932.
    [19] YOU M.Strength and damage of marble in ductile failure[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(2): 161-166.
    [20] PATERSON M S.Experimental deformation and faulting in Wombeyan marble[J]. Bulletin of the Geological Society of America, 1958, 69(4): 465-476.
    [21] ROSENGREN K J, JAEGER J C.The mechanical properties of an interlocked low-porosity aggregate[J]. Géotechnique, 1968, 18(3): 317-326.
    [22] GEROGIANNOPOULOS N G.A critical state approach to rock mechanics[D]. London: University of London, 1976.
    [23] BAHRANI N, KAISER P K, VALLEY B.Distinct element method simulation of an analogue for a highly interlocked, non-persistently jointed rockmass[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 117-130.
    [24] 尤明庆. 岩样三轴压缩的破坏形式和Coulomb强度准则[J]. 地质力学学报, 2002, 8(2): 179-185.
    (YOU Ming-qing.Destroy character and coulomb criterion of rock specimen in pseudo-triaxial compression[J]. Journal of Geomechanics, 2002, 8(2): 179-185.(in Chinese))
    [25] MOORE D E, LOCKNER D A.The role of microcracking in shear-fracture propagation in granite[J]. Journal of Structural Geology, 1995, 17(1): 95-114.
    [26] KAWAKATA H, CHO T, KIYAMA T, et al.Three- dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan[J]. Tectonophysics, 1999, 313(3): 293-305.
    [27] MASUDA K, MIZUTANI H, YAMADA I.Experimental study of strain-rate dependence and pressure dependence of failure properties of granite[J]. Journal of Physical Earth, 1987, 35(1): 37-66.
    [28] HAIMSON B, CHANG C.A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1/2): 285-296.
    [29] BYERLEE J D.The frictional characteristics of Westerly granite[D]. Massachusetts: Massachusetts Institute of Technology, 1966.
    [30] BYERLEE J D.Frictional characteristics of granite under high confining pressure[J]. Journal of Geophysical Research, 1967, 72(14): 3639-3648.
    [31] PATERSON M S, WONG T F.Experimental rock deformation-the brittle field[M]. Netherlands: Springer, 2004.
    [32] SCHWARTZ A E.Failure of rock in the triaxial shear test[C]// Proceedings of the 6th US Symposium on Rock Mechanics. Rolla, 1964: 109-151.
    [33] MARANINI E, YAMAGUCHI T.A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J]. Mechanics of Materials, 2001, 33(5): 283-293.
    [34] BESUELLE P, DESRUES J, RAYNAUD S.Experimental characterization of the localization phenomenon inside a Vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(8): 1223-1237.
    [35] FRANKLIN J A, HOEK E.Development in triaxial testing technique[J]. Rock Mechanics, 1970, 2(4): 223-228.
    [36] 张强, 李诚, 郭强, 等. 指数型岩石真三轴强度准则[J]. 岩土工程学报, 2018, 40(4): 625-633.
    (ZHANG Qiang, LI Cheng, GUO Qiang, et al.Exponent true triaxial strength criterion of rock[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 625-633. (in Chinese))
  • 期刊类型引用(5)

    1. 王者超,赵金萌,乔丽苹,闵忠顺,李晓光. 三向应力作用下砂岩结构面摩擦特性. 工程地质学报. 2024(06): 2188-2197 . 百度学术
    2. 李文良,张铁,李佳林,罗刚,周建伟. 基于核磁共振试验的粉砂岩干湿循环损伤演化研究. 水运工程. 2023(03): 24-30+49 . 百度学术
    3. 石浩,张后全,吴疆宇,宋雷,李明,荣传新,陆鹏举. 考虑微元强度韦伯分布与裂纹长度幂律排布的砂岩强度预测模型. 西北工业大学学报. 2023(06): 1114-1124 . 百度学术
    4. 蒋中明,秦双专,唐栋. 压气储能地下储气库围岩累积损伤特性数值研究. 岩土工程学报. 2020(02): 230-238 . 本站查看
    5. 尤明庆. 基于指数准则在莫尔空间对岩石剪切强度的研究. 力学学报. 2019(02): 607-619 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  341
  • HTML全文浏览量:  8
  • PDF下载量:  314
  • 被引次数: 8
出版历程
  • 收稿日期:  2018-03-04
  • 发布日期:  2019-03-24

目录

    /

    返回文章
    返回