• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

强夯置换中碎石运动机制和成墩过程的数值模拟

郑凌逶, 周风华, 谢新宇

郑凌逶, 周风华, 谢新宇. 强夯置换中碎石运动机制和成墩过程的数值模拟[J]. 岩土工程学报, 2013, 35(11): 2068-2075.
引用本文: 郑凌逶, 周风华, 谢新宇. 强夯置换中碎石运动机制和成墩过程的数值模拟[J]. 岩土工程学报, 2013, 35(11): 2068-2075.
ZHENG Ling-wei, ZHOU Feng-hua, XIE Xin-yu. Numerical simulation of forming of replacement piers during a dynamic replacement process[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2068-2075.
Citation: ZHENG Ling-wei, ZHOU Feng-hua, XIE Xin-yu. Numerical simulation of forming of replacement piers during a dynamic replacement process[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2068-2075.

强夯置换中碎石运动机制和成墩过程的数值模拟  English Version

基金项目: 宁波市"近海冲击与安全工程"创新团队项目
详细信息
    作者简介:

    郑凌逶(1989- ),男,浙江乐清人,博士研究生,主要从事冲击动力学、岩土工程方面的研究。E-mail: zhenglingwei@hotmail.com。

    通讯作者:

    周风华

  • 中图分类号: TU472

Numerical simulation of forming of replacement piers during a dynamic replacement process

  • 摘要: 关于强夯置换碎石墩形成机理(特别是碎石运动和动态成墩过程)的数值模拟研究较少。之前的数值模拟研究往往将碎石垫层视为均匀的连续介质进行分析,偏离了碎石体的物理实质。将碎石分为个体分散接触进行了建模,对单次夯击和连续多次夯击过程中碎石体的变形成墩过程进行了数值模拟。分析结果表明:将碎石垫层视为分离的碎石个体进行模拟可展现强夯置换中碎石墩的形成过程及其变形机制;强夯置换过程按时间顺序可分为夯锤与碎石的能量传递和碎石垫层之间的应力波传播过程、碎石垫层接触软土后的整体变形、夯锤二次冲击碎石结构重分布、稳定结构的碎石与夯锤共同运动4个阶段,并分别阐述了各阶段的具体原因和作用;从铅垂方向排列碎石的水平运动分析了整体成墩的原因。通过对连续夯击过程的数值模拟,获得了夯锤运动状态、能量释放时间变化规律,数值模拟得到的夯锤运动位移、速度、加速度与试验观测结果比较吻合。
    Abstract: Numerical studies on the forming mechanism of replacement piers are scarce, particularly on the kinetic movement of the reinforcement (the stones) and the deformation of the gravel layers. Previous studies tend to treat the stone layer as a continuum, which does not conform to the reality. The numerical simulation is conducted to study the movement of many stones in the soils during the dynamic replacement process. The deformation and forming process of the reinforcement are modeled as the frictionally contacting circular granules. The dynamic replacement process is also simulated under repeated impacts. The numerical results show the forming process of the reinforcement pier. The movement and the distribution of the stones within the soils can be divided into 4 stages. The numerical simulated of repeating tampings agrees reasonably well with the experimental results in terms of hammer velocity, displacement and acceleration.
  • [1] MENARD L, BROISE Y. Theoretical and practical aspects of dynamic consolidation[J]. Géotechnique, 1975, 25(1): 3-18.
    [2] LO K W, OOI P L, LEE S L. Dynamic replacement and mixing of organic soils with sand charges[J]. Journal of Geotechnical Engineering, 1990, 116(10): 35-41.
    [3] 张凤文, 周洪彬. 强夯置换碎石桩复合地基承载力的试验研究[J]. 岩石力学与工程学报, 2000, 19(4): 522-525. (ZHANG Feng-wen, ZHOU Hong-bin. Testing study on the dynamically formed stone column compound foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 522-525. (in Chinese))
    [4] CHOW Y K, YONG D M, LEE S L. Dynamic compaction analysis[J]. Journal of Geotechnical Engineering, 1992, 118(8): 1141-1157.
    [5] 孔令伟, 袁建新. 强夯的边界接触应力与沉降特性研究[J]. 岩土工程学报, 1998, 20(2): 86-92. (KONG Ling-wei, YUAN Jian-xin. Study on surface contact stress and settlement properties during dynamic consolidation[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 86-92. (in Chinese))
    [6] PAN J L, SELBY A R. Simulation of dynamic compaction of loose granular soils[J]. Advances in Engineering Software, 2002, 33: 631-640.
    [7] MOSTAFA K F, LIANG Robert Y. Numerical modeling of dynamic compaction in cohesive soils[C]// Proceedings of the Geo-Frontiers 2011 Conference. 2011: 738-747.
    [8] 田 水, 王 钊. 强夯动力性能的显式非线性数值分析[J]. 岩土力学, 2008, 29(6): 1580-1584. (TIAN Shui, WANG Zhao. Explicit nonlinear numerical analysis of dynamical performance of dynamic compaction[J]. Rock and Soil Mechanics, 2008, 29(6): 1580-1584. (in Chinese))
    [9] 牛志荣, 杨桂通. 强夯作用下土体动力特性研究[J]. 工程力学, 2006, 23(3): 118-125. (NIU Zhi-rong, YANG Gui-tong. Dynamic characteristics of soils during and after dynamic consolidation[J]. Engineering Mechanics, 2006, 23(3): 118-125. (in Chinese))
    [10] 刘汉龙, 高有斌, 曹建建, 等. 强夯作用下接触应力与土体纵向位移计算[J]. 岩土工程学报, 2009, 31(10): 1493-1497. (LIU Han-long, GAO You-bin, CAO Jian-jian, et al. Calculation of contact stress and soil vertical displacement under dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1493-1497. (in Chinese))
    [11] 高有斌, 刘汉龙, 张敏霞, 等. 强夯加固地基的土体纵向位移计算方法研究[J]. 岩土力学, 2010, 31(8): 2672-2676. (GAO You-bin, LIU Han-long, ZHANG Min-xia, et al. Simplified calculation method of soil vertical displacement under dynamic compaction[J]. Rock and Soil Mechanics, 2010, 31(8): 2672-2676. (in Chinese))
    [12] 钱家欢, 钱学德, 赵维炳, 等. 动力固结的理论与实践[J]. 岩土工程学报, 1986, 8(6): 1-17. (QIAN Jia-huan, QIAN Xue-de, ZHAO Wei-bing. Theory and practice of dynamic consolidation[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(6): 1-17. (in Chinese))
    [13] 王保田, 唐劲柏. 强夯碎石桩的发展及成桩机制分析[J]. 河海大学学报, 1999, 27(6): 30-34. (WANG Bao-tian, TANG Jin-bai. Development of DRM and analysis of column-formation mechanism[J]. Journal of Hohai University, 1999, 27(6): 30-34. (in Chinese))
    [14] 罗嗣海, 潘小青, 黄松华, 等. 置换深度估算的一维波动方程法[J]. 地球科学, 2002, 27(1): 115-119. (LUO Si-hai, PAN Xiao-qing, HUANG Song-hua, et al. One-dimensional wave equation model for estimating replacement depth of dynamic replacement[J]. Earth Science, 2002, 27(1): 115-119. (in Chinese))
    [15] 周 健, 邓益兵, 贾敏才, 等. 基于颗粒单元接触的二维离散-连续耦合分析方法[J]. 岩土工程学报, 2010, 32(10): 1479-1484. (ZHOU Jian, DENG Yi-bing, JIA Min-cai. Coupling method of two-dimensional discontinuum- continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1479-1484. (in Chinese))
    [16] 邓益兵, 周 健, 刘文白, 等. 螺旋挤土桩下旋成孔过程的颗粒流数值模拟[J]. 岩土工程学报, 2011, 33(9): 1391-1398. (DENG Yi-bing, ZHOU Jian, LIU Wen-bai. PFC numerical simulation of augered piling of soil displacement screw piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1391-1398. (in Chinese))
    [17] 吴勇华, 谢新宇, 叶 军, 等. 跨越地铁高层建筑桩筏基础数值模拟研究[J]. 岩土工程学报, 2011, 33(3): 441-447. (WU Yong-hua, XIE Xin-yu, YE Jun, et al. Numerical simulation of piled raft foundation of super-tall buildings crossing metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 441-447. (in Chinese))
    [18] 吴 健, 王屹峰, 刘开富, 等. 大面积堆载下地下构筑物性状研究[J]. 岩土工程学报, 2008, 30(9): 1343-1348. (WU Jian, WANG Yi-feng, LIU Kai-fu, et al. Behavior of underground structures under large area loading[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1343-1348. (in Chinese))
    [19] 谢新宇, 徐玉胜, 吴 健, 等. 软土地基连续强夯置换碎石墩的数值分析[J]. 西北地震学报, 2011, 33(3): 249-254. (XIE Xin-yu, XU Yu-sheng, WU Jian, et al. Numerical simulation of stone column replacement by consecutive dynamic compaction in soft ground[J]. Northwestern Seismological Journal, 2011, 33(3): 249-254. (in Chinese))
    [20] 郑凌逶. 软土中强夯置换法形成碎石墩的机理[D]. 宁波:宁波大学, 2013. (ZHENG Ling-wei. Study on the forming mechanism of the replacement pier under dynamic replacement method[D]. Ningbo: Ningbo University, 2013. (in Chinese))
    [21] 朱向荣, 王金昌. ABAQUS软件中部分土模型简介及其工程应用[J]. 岩土力学, 2004. 25(增刊2): 144-148. (ZHU Xiang-rong, WANG Jin-chang. Introduction to partly soil models in ABAQUS Software and their application to the geotechnical engineering[J]. Rock and Soil Mechanics, 2004, 25(S2): 144-148. (in Chinese))
计量
  • 文章访问数:  358
  • HTML全文浏览量:  3
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-01
  • 发布日期:  2013-11-19

目录

    /

    返回文章
    返回