• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

垃圾填埋场污染物击穿竖向防渗帷幕时间的影响因素分析及设计厚度的简化计算公式

詹良通, 刘伟, 曾兴, 陈云敏

詹良通, 刘伟, 曾兴, 陈云敏. 垃圾填埋场污染物击穿竖向防渗帷幕时间的影响因素分析及设计厚度的简化计算公式[J]. 岩土工程学报, 2013, 35(11): 1988-1996.
引用本文: 詹良通, 刘伟, 曾兴, 陈云敏. 垃圾填埋场污染物击穿竖向防渗帷幕时间的影响因素分析及设计厚度的简化计算公式[J]. 岩土工程学报, 2013, 35(11): 1988-1996.
ZHAN Liang-tong, LIU Wei, ZENG Xing, CHEN Yun-min. Parametric study on breakthrough time of vertical cutoff wall for MSW landfills and simplified design formula for wall thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1988-1996.
Citation: ZHAN Liang-tong, LIU Wei, ZENG Xing, CHEN Yun-min. Parametric study on breakthrough time of vertical cutoff wall for MSW landfills and simplified design formula for wall thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1988-1996.

垃圾填埋场污染物击穿竖向防渗帷幕时间的影响因素分析及设计厚度的简化计算公式  English Version

基金项目: 国家高新技术发展计划(863)计划项目(2012AA062601)
详细信息
    作者简介:

    詹良通(1972- ),男,教授,博士生导师,主要从事非饱和土力学、环境岩土工程和边坡工程等方面的教学与科研工作。E-mail: zhanlt@zju.edu.cn。

  • 中图分类号: TU47

Parametric study on breakthrough time of vertical cutoff wall for MSW landfills and simplified design formula for wall thickness

  • 摘要: 为了解中国第一代垃圾填埋场中防渗帷幕的服役性能及其影响因素,以苏州七子山填埋场地质条件为例,以COD作为代表性污染物,在前期现场勘查基础上建立了有限差分计算模型,对防渗帷幕被污染物击穿时间的影响因素进行了计算分析,并基于Ogata解析解给出了防渗帷幕击穿时间和设计厚度的简化计算公式。模拟和分析结果表明:场地地质条件对嵌入式防渗帷幕击穿时间影响不十分显著;帷幕上下游水头差、帷幕渗透系数、阻滞因子和厚度对嵌入式防渗帷幕的击穿时间有显著影响,击穿时间与上下游水头差、帷幕渗透系数、阻滞因子、以及帷幕厚度的平方近似呈线性关系;扩散系数对嵌入式防渗帷幕击穿时间的影响不可忽略。
    Abstract: In order to investigate the performance of vertical cutoff wall for a simple dump landfill, a finite difference model is set up on the basis of the geological condition of the Qizishan landfill in Suzhou. The breakthrough time of vertical cutoff wall by the contaminant of COD is analyzed considering different materials and design parameters. The parametric study shows that cross hydraulic head, wall permeability, retarding factor and design thickness are the primary parameters to affect the breakthrough time of the cut off wall being keyed into an aquitard layer. The effect of geological condition on the keyed-in cut off wall is relatively insignificant. The influence of diffusion coefficient can not be neglected, especially for the condition of low cross hydraulic head.
  • [1] 中华人民共和国环境保护部. 第一次全国污染源普查公报[R]. 北京: 中华人民共和国环境保护部. 2010. 3-15. (PRC Environmental Protection Department. The first national Pollution source census bulletin.[R]. Beijing: PRC Environmental Protection Department. 2010. 3-15 (in Chinese))
    [2] EPA. Slurry trench construction for pollution migration control. [R]. Superfund, EPA-540/2-84-001. 1984.
    [3] 田余庆. 黏土固化注浆帷幕在固体废物填埋场中的阻滞性能研究[D]. 长沙: 中南大学, 2003: 1-9, 52-59. (TIAN Yu-qing. Retention effect of clay-solidified grouting curtain in landfill[D]. Changsha: Central South University, 2003: 1-9, 52-59. (in Chinese))
    [4] 陈永贵. 黏土固化注浆帷幕对渗滤液的阻渗机理及环境效应[D]. 长沙: 中南大学, 2004: 1-10, 14-36, 101-112. (CHEN Yong-gui. Retention mechanism and environmental effects of clay-solidified grouting curtain to leachate in landfill[D]. Changsha: Central South University, 2004: 1-10, 14-36, 101-112. (in Chinese))
    [5] KAMON Masashi, KATSUMI Takeshi, INUI Toru, et al. Hydraulic performance of soil-bentonite mixture barrier[C]// Proceedings of 5th International Congress on Environmental Geotechnics, 2006: 733-740.
    [6] KATSUMI Takeshi, INUI Toru, KAMON Masashi. In-situ containment for waste landfill and contaminated sites[C]// Proceedings of International Symposium Geoenvironmental Engineering. Hangzhou, 2009: 248-258.
    [7] INAZUMI Shinya, KIMURA Makoto, NISHIYAMA Yoshikazu, et al. New type of hydraulic cutoff walls in coastal landfill sites from H-jointed steel pipe sheet piles with H-H joints[C]// Proceedings of 5th International Congress on Environmental Geotechnics, 2006: 725-732.
    [8] OPDYKE S M, EVANS J C. Slag-cement-bentonite slurry walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(6): 673-681.
    [9] EVANS J C, OPDYKE S M. Strength, permeability and compatibility of slag-cement-bentonite slurry wall mixtures for constructing vertical barriers[C]// Proceedings of 5th International Congress on Environmental Geotechnics, 2006: 118-125.
    [10] FRATALOCCHI E, PASQUALINI E, BALBONI P. Performance of a cement-bentonite cut-off wall in an acidic sulphate environment[C]// Proceedings of 5th International Congress on Environmental Geotechnics, 2006: 133-139.
    [11] 徐 超, 黄 亮, 邢皓枫. 水泥-膨润土泥浆配比对防渗墙渗透性能的影响[J]. 岩土力学, 2010, 31(2): 422-426. (XU Chao, HUANG Liang, XING Hao-feng. Influence of cement-bentonite slurry mixing ratio on permeability of cutoff wall[J]. Rock and Soil Mechanics, 2010, 31(2): 422-426. (in Chinese))
    [12] NEVILLE C J, ANDREWS C B. Containment criterion for contaminant isolation by cutoff walls[J]. Ground Water, 2006, 44(5): 682-686.
    [13] PHILIP L K. An investigation into contaminant transport processes through single- phase cement-bentonite slurry walls[J]. Engineering Geology, 2001, 60: 209-221.
    [14] 张文杰, 陈云敏, 詹良通. 垃圾填埋场渗滤液床垂直防渗帷幕的渗漏分析[J]. 环境科学学报, 2008, 28(5): 925-929. (ZHANG Wen-jie, CHEN Yun-min, ZHAN Liang-tong. Transport of leachate through vertical curtain grouting in landfills[J]. Acta Scientiae Circumstantiae, 2008, 28(5): 925-929. (in Chinese))
    [15] 王艳明, 张乾飞. 填埋场防渗帷幕污染防治数值模拟及性能评价研究[J]. 水动力学研究与进展, 2009, 24A(5): 662-670. (WANG Yan-ming, ZHANG Qian-fei. Study on numerical simulation and property evaluation of pollution prevention from vertical barrier curtains in sanitary landfills[J]. Chinese Journal of Hydrodynamics, 2009, 24A(5): 662-670. (in Chinese))
    [16] OGATA A, BANKS R B. A solution of the differential equation of longitudinal dispersion in porous media[M]. Washington DC: U S Government Printing Office, 1961.
    [17] ZHAN Tony L T, CHEN Y M, LING W A. Shear strength characterization of municipal solid waste at the Suzhou landfill, China[J]. Engineering Geology, 2008, 97: 97-111.
    [18] 谢海建. 成层介质污染物的迁移机理及衬垫系统防污性能研究[D]. 杭州: 浙江大学, 2008: 21-46, 63-95, 145-162, 189-213. (XIE Hai-jian. A study on contaminant transport in layered media and the performance of landfill liner systems[D]. Hangzhou:Zhejiang University, 2008: 21-46, 63-95, 145-162, 189-213. (in Chinese))
    [19] XIE Hai-jian, CHEN Yun-min, ZHAN Liang-tong, et al. Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system[J]. Journal of Zhejiang University (Science a), 2009, 10(3): 439-449.
    [20] 谢 焰, 谢海建, 陈云敏, 等. 填埋场底土污染物浓度实测值和理论解的比较[J]. 自然灾害学报, 2009, 18(5): 62-69. (XIE Yan, XIE Hai-jian, CHEN Yun-min, et al. Comparisons of measurements of contaminant concentration in landfill bottom soils with theoretical solutions[J]. Journal of Natural Disasters, 2009, 18(5): 62-69. (in Chinese))
    [21] MCDONALD M G, HARBAUGH A W. A modular three-dimensional finite-difference ground-water flow model[R]// Techniques of water-resources investigations of the United States Geological Survey: Chapter A1. Washington DC: United States Government Printing Office, 1988: 83-875.
    [22] ZHENG Chun-miao, WANG P Patrick. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide[CP]. US Army Crops of Engineers, Engineer Research and Development Center. 1999.
    [23] 王洪涛. 多孔介质污染物迁移动力学[M]. 北京: 高等教育出版社, 2008: 1-62. (WANG Hong-tao. Dynamics of fluid and contaminant transport in porous media[M]. Beijing: Higher Education Press, 2008: 1-62. (in Chinese))
计量
  • 文章访问数:  425
  • HTML全文浏览量:  13
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-03
  • 发布日期:  2013-11-19

目录

    /

    返回文章
    返回