• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑参数空间变异性的边坡可靠度分析非侵入式 随机有限元法

李典庆, 蒋水华, 周创兵, 方国光

李典庆, 蒋水华, 周创兵, 方国光. 考虑参数空间变异性的边坡可靠度分析非侵入式 随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413-1422.
引用本文: 李典庆, 蒋水华, 周创兵, 方国光. 考虑参数空间变异性的边坡可靠度分析非侵入式 随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413-1422.
LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, PHOON Kok Kwang. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422.
Citation: LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, PHOON Kok Kwang. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422.

考虑参数空间变异性的边坡可靠度分析非侵入式 随机有限元法  English Version

基金项目: 国家杰出青年科学基金项目(51225903)
详细信息
    作者简介:

    李典庆(1975- ),男,湖北十堰人,博士,教授,博士生导师,主要从事岩土工程可靠度与风险控制方面的研究。E-mail: dianqing@whu.edu.cn。

  • 中图分类号: TU43

Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method

  • 摘要: 提出了考虑土体参数空间变异性的边坡可靠度分析的非侵入式随机有限元法。采用Karhunen-Loeve级数展开方法表征土体抗剪强度参数空间变异性,其中通过wavelet-Galerkin技术求解Fredholm积分方程得到相关函数的特征解。基于有限元滑面应力法计算边坡安全系数,采用随机多项式展开将隐式函数表达的安全系数替换为显式函数表达的安全系数,并编写了计算程序NISFEM。研究了所提方法在考虑土体参数空间变异性的边坡稳定可靠度分析中的应用。结果表明:提出的非侵入式随机有限元法极大地提高了考虑土体参数空间变异性的边坡可靠度分析的计算效率,为解决复杂边坡稳定可靠度问题提供了一条有效的途径。考虑抗剪强度参数空间变异性的边坡可靠度分析存在临界变异系数,其随边坡安全系数的增加而增大。当抗剪强度参数的变异系数小于临界变异系数时,忽略土体参数空间变异性将会高估边坡失效概率。当边坡安全系数小于1时,边坡失效概率并不总是随着抗剪强度变异系数的增加而增大。此外,土体黏聚力和内摩擦角随机场间相关性对边坡失效概率具有十分明显的影响。
    Abstract: A non-intrusive stochastic finite element method (NISFEM) is proposed for the reliability analysis of slope stability considering spatial variability of soil parameters. Firstly, the Karhunen-Loeve (K-L) expansion method is used to characterize the spatial variability of shear strength parameters, where the wavelet-Galerkin technique is employed to numerically solve the eigenvalue problem of the Fredholm integral equation. Thereafter, the finite element method is used for slope stability analysis, the factor of safety is explicitly expressed using the Hermite polynomial chaos expansion (PCE), and the flow chart of procedure is also presented. Finally, the proposed NISFEM is studied by application to the reliability analysis of a homogeneous slope. The results indicate that the proposed method can greatly improve the calculation efficiency for slope reliability analysis considering spatial variability of soil parameters, and that it provides on effective way for solving complex slope reliability problems. There exists a critical coefficient of variation for slope reliability analysis, which increases as the factor of safety increases. If the spatial variability of soil properties is ignored, it will lead to overestimating the probability of failure when the coefficient of variation of shear strength parameters is less than the critical value. The probability of failure does not always increase with the coefficient of variation when the factor of safety is less than 1.0. In addition, the correlation between the random fields of effective cohesion and internal friction angle has a very significant effect on the
  • [1] CHRISTIAN J T, LADD C C, BAECHER G B. Reliability applied to slope stability analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1994, 120(12): 2180-2207.
    DUNCAN J M. Factors of safety and reliability in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(4): 307-316.
    GRIFFITHS D V, FENTON G A. Probabilistic slope stability analysis by finite elements[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(5): 507-518.
    GRIFFITHS D V, HUANG J S, FENTON G A. Influence of spatial variability on slope reliability using 2-D random fields[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2009, 135(10): 1367-1378.
    SUCHOMEL R, Ma?ín D. Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c-φ soil[J]. Ma?ín D. Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c-φ soil[J]. Computers and Geotechnics, 2010, 37(1/2), 132-140.
    WANG Y, CAO Z J, AU S K. Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet[J]. Canadian Geotechnical Journal, 2011, 48(1): 162-172.
    CHO S E. Effects of spatial variability of soil properties on slope stability[J]. Engineering Geology, 2007, 92(3/4): 97-109.
    CHO S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(7): 975-984.
    HUANG S P. Simulation of random processes using Karhunen-Loeve expansion[D]. Singapore: National University of Singapore, 2001.
    JI J, LIAN H J. LOW B K. Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations[J]. Computers and Geotechnics, 2012, 40: 135-146.
    吴振君, 王水林, 葛修润. 约束随机场下的边坡可靠度随机有限元分析方法[J]. (岩土力学), 2009, 30(10): 3086-3092.(WU Zhen-jun, WANG Shui-lin, GE Xiu-run. Slope reliability analysis by random FEM under constraint random field[J]. Rock and Soil Mechanics, 2009, 30(10): 3086-3092. (in Chinese))
    潘 健, 周 森. 考虑参数空间变异性的不排水边坡可靠度分析[J]. (汕头大学学报(自然科学版)), 2010, 25(3): 74-80.(PAN Jian, ZHOU Sen. Analysis of influence of spatial variability on undrained slope reliability[J]. Chinese Journal of Shantou University (Natural Science ), 2010, 25(3): 74-80. (in Chinese))
    PHOON K K, HUANG S P, QUEK S T. Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303.
    GEO-SLOPE International Ltd. Stress-deformation modeling with SIGMA/W 2007 version: an engineering methodology[M]. Calgary: GEO-SLOPE International Ltd, 2010.
    GEO-SLOPE International Ltd. Stability modeling with SLOPE/W 2007 version: an engineering methodology[M]. Calgary: GEO-SLOPE International Ltd, 2010.
    LI K S, LUMB P. Probabilistic design of slopes[J].Canadian Geotechnical Journal, 1987, 24(4): 520-535.
    SONG K I, CHO G C, LEE S W. Effects of spatially variable weathered rock properties on tunnel behavior[J]. Probabilistic Engineering Mechanics, 2011, 26(3): 413-426.
    EL-RAMLY H, MORGENSTERN N R, CRUDEN D M. Probabilistic stability analysis of a tailings dyke on presheared clay-shale[J]. Canadian Geotechnical Journal, 2003, 40(1): 192-208.
    LI D Q, CHEN Y F, LU W B,et al. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[J]. Computers and Geotechnics, 2011, 38(1): 58-68.
    HUANG S P, LIANG B, PHOON K K. Geotechnical probabilistic analysis by collocation-based stochastic response surface method- An EXCEL add-in implementation [J]. Georisk, 2009, 3(2): 75-86.
    MOLLON G, DIAS D, SOUBRA A H. Probabilistic analysis of pressurized tunnels against face stability using collocation-based stochastic response surface method[J]. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 2011, 137(4): 385-397.
    ZOU J Z, WILLIANS D J, XIONG W L. Search for critical slip surfaces based on finite element method[J]. Canadian Geotechnical Journal, 1995, 32(2): 233-246.
    FARIAS M M, NAYLOR D J. Safety analysis using finite elements[J]. Computers and Geotechnics, 1998, 22(2): 165-181.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-13
  • 发布日期:  2013-08-19

目录

    /

    返回文章
    返回