• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

大直径管桩在瞬态集中荷载作用下的 振动响应时域解析解

丁选明, 刘汉龙

丁选明, 刘汉龙. 大直径管桩在瞬态集中荷载作用下的 振动响应时域解析解[J]. 岩土工程学报, 2013, 35(6): 1010-1017.
引用本文: 丁选明, 刘汉龙. 大直径管桩在瞬态集中荷载作用下的 振动响应时域解析解[J]. 岩土工程学报, 2013, 35(6): 1010-1017.
DING Xuan-ming, LIU Han-long. Time-domain analytical solution of the vibration response of a large-diameter pipe pile subjected to transient concentrated load[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1010-1017.
Citation: DING Xuan-ming, LIU Han-long. Time-domain analytical solution of the vibration response of a large-diameter pipe pile subjected to transient concentrated load[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1010-1017.

大直径管桩在瞬态集中荷载作用下的 振动响应时域解析解  English Version

基金项目: 国家自然科学基金项目(51008115);国家自然科学基金高铁联合基金重点项目(U1134207);江苏省自然科学基金项目(BK2012811)
详细信息
    作者简介:

    丁选明(1980- ),男,博士,副研究员,主要从事桩基动力学与软土地基处理方面的教学与科研工作。E-mail:dxmhhu@163.com。

  • 中图分类号: TU473.16

Time-domain analytical solution of the vibration response of a large-diameter pipe pile subjected to transient concentrated load

  • 摘要: 大直径管桩在低应变检测中应力波的传播是一个三维波动问题。将桩周土、桩芯土和桩底土对桩的作用简化为文克尔弹簧,将激振力用半正弦脉冲模拟,建立了大直径管桩在瞬态集中荷载作用下的振动响应计算模型,采用分离变量法和常数变易法求得了波动方程的时域解表达式。将该时域解与采用数值傅立叶逆变换计算得到的时域响应进行了对比验证,进一步将时域解析解计算结果与试验值进行了对比,验证了其合理性。采用得到的时域解计算分析了桩顶速度时域响应特性,结果表明:入射波到达时间和结束时间与波的传播距离成正比,从0°点到180°点基本呈线性变化;激振点的入射波结束时间等于输入脉冲宽度,其余测点的入射波结束时间与入射波到达时间的差值与输入脉冲宽度相等;入射波峰值对应的时间在激振点最小,从0°点到135°点逐渐增大,在135°点到180°点之间基本保持不变。
    Abstract: For a large-diameter pipe pile subjected to transient concentrated load in low strain testing, the wave propagation should be explained by three-dimensional wave equation. The effects of the soils on the pile are modeled by Winkler spring. The exciting force is simulated by a semisinusoidal impulse. A mechanical model for the vibration response of the large-diameter pipe pile subjected to transient concentrated load is established. The time-domain analytical solution is obtained by the separation of variables and the variation of constants. The results of the proposed analytical solution are compared with those calculated by numerical Fourier inverse transformation. The validity is also verified by the test results. The time-domain velocity responses on the pile top are analyzed by means of the analytical solution. The calculated results indicate that the arrival and terminative time of the incident waves is proportional to the propagation distance and it varies linearly from the point of 0° to that of 180°. At the exciting point, the terminative time of the incident waves is equal to the width of the input impulses, and at the other points, the difference between the terminative and arrival time of the incident waves is equal to the width of the input impulses. The peak time of the incident waves at the exciting point is the earliest and that from the point of 0° to that of 135° increases gradually. However, the peak time does not increase any more from the point of 135° to that of 180°.
  • [1] MORGANO C M. Determining embedment depths of deep foundations using non-destructive methods[C]// Fifth International Conference on the Application of Stress-wave Theory to Piles. Orlando, 1996:734-747.
    [2] LIKINS G E, RAUSCHE F. Recent advances and proper use of PDI low strain pile integrity testing[C]// Sixth International Conference on the Application of Stress-wave Theory to Piles. St Paul, 2000:211-218.
    [3] MASSOUDI N, TEFFERA W. Non-destructive testing of piles using the low strain integrity method[C]// Proceedings of the Fifth International Conference on Case Histories in Geotechnical Engineering. New York, 2004:13-17.
    [4] SMITH E A L. Pile driving analysis by the wave equation[J]. Journal of Soil Mechanics & Foundations Division, ASCE,1960, 86:35-61.
    [5] RAUSCHE F. Soil response from dynamic analysis and measurement on piles[D]. Cleveland Ohio: Division of Solid Mechanics, Structures and Mechanical Design,Case Western Reserve University, 1970.
    [6] RAUSCHE F. Soil resistance prediction from pile dynamics[J]. Journal of Soil Mechanics & Foundations Division, ASCE,1972, 98(SM9):917-937.
    [7] RAUSCHE F, GOBLE G G, LIKINS G E. Investigation of dynamic soil resistance on piles using GRLWEAP[C]// Proceedings of the Fourth International Conference on the Application of Stress-Wave Theory to Piles. Rotterdam, 1992:137-142.
    [8] NOVAK M. Vertical vibration of floating piles[J]. Journal of the Engineering Mechanics Division, ASCE,1977, 103(EM1):153-168.
    [9] NOVAK M, ABOUL-ELLA F. Impedance functions of piles in layered media[J]. Journal of the Engineering Mechanics Division, ASCE,1978, 104(EM6):643-661.
    [10] YANG D Y, WANG K H, ZHANG Z Q,et al. Vertical dynamic response of pile in a radially heterogeneous soil layer[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009,33:1039-1054.
    [11] LIU R, YAN S W, LI Z H. soil plug effect prediction and pile driveability analysis for large-diameter steel piles in ocean engineering[J]. China Ocean Engineering, 2009,23(1):107-118.
    [12] LIU E Y F. Prevention of cracking for large diameter concrete pipe piles[C]// 8th International Conference on the Application of Stress-Wave Theory to Piles. Lisbon, 2008:277-281.
    [13] LIU H L, CHU J, DENG A. Use of large-diameter, cast-in situ concrete pipe piles for embankment over soft clay[J]. Canadian Geotechnical Journal, 2009,46(8):915-927.
    [14] 陈 凡,(罗文章). 预应力管桩低应变反射波法检测时的尺寸效应研究[J]. (岩土工程学报), 2004,26(3):353-356. (CHEN Fan, LUO Wen-zhang.
    Dimension effect on low strain integrity testing of prestressed pipe piles[J]. Chinese Journal Geotechnical Engineering, 2004, 26(3): 353-356.( (in Chinese))
    [15] CHOW Y K, PHOON K K, CHOW W F,et al. Low strain integrity testing of piles: three-dimensional effects[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003, 129(11):1057-1062.
    [16] GAZIS D C. Three-dimensional investigation of the propagation of waves in hollow circular cylinders: I Analytical foundation[J]. Journal of the Acoustical Society of America, 1959,31(5):568-573.
    [17] GAZIS D C. Three-dimensional investigation of the propagation of waves in hollow circular cylinders, II Numerical results[J]. Journal of the Acoustical Society of America, 1959,31(5):573-578.
    [18] DING X M, LIU H L, ZHANG B. High-frequency interference in low strain integrity testing of large-diameter pipe piles[J]. Science China Technological Sciences, 2011,54(2):420-430.
    [19] 刘汉龙),(丁选明). 现浇薄壁管桩低应变反射波法检测时瞬态波传播特性研究[J]. (岩土工程学报), 2008,30(3):414-419. (LIU Han-long, DING Xuan-ming.
    Propagation characteristics of transient waves in low strain integrity tests on cast-in-situ concrete thin-wall pipe piles[J]. Chinese Journal Geotechnical Engineering, 2008, 30(3): 414-419.( (in Chinese))
计量
  • 文章访问数:  781
  • HTML全文浏览量:  8
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-12
  • 发布日期:  2013-06-19

目录

    /

    返回文章
    返回