• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾构施工对孔压扰动的三维流固耦合分析

宋锦虎, 缪林昌, 戴仕敏, 马元

宋锦虎, 缪林昌, 戴仕敏, 马元. 盾构施工对孔压扰动的三维流固耦合分析[J]. 岩土工程学报, 2013, 35(2): 302-312.
引用本文: 宋锦虎, 缪林昌, 戴仕敏, 马元. 盾构施工对孔压扰动的三维流固耦合分析[J]. 岩土工程学报, 2013, 35(2): 302-312.
SONG Jin-hu, MIAO Lin-chang, DAI Shi-min, MA Yuan. 3D coupled mechanical and hydraulic analysis of pore water pressure disturbed by shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 302-312.
Citation: SONG Jin-hu, MIAO Lin-chang, DAI Shi-min, MA Yuan. 3D coupled mechanical and hydraulic analysis of pore water pressure disturbed by shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 302-312.

盾构施工对孔压扰动的三维流固耦合分析  English Version

基金项目: 国家自然科学基金项目(51278099)
详细信息
    作者简介:

    宋锦虎(1984– ),男,博士研究生,主要从事地下结构支护方面研究工作。E-mail: cumtsong@163.com

  • 中图分类号: U455.43;TU4

3D coupled mechanical and hydraulic analysis of pore water pressure disturbed by shield tunnelling

  • 摘要: 如何对盾构施工过程中的孔压监测数据进行实时分析是工程实践中的难点问题。结合上海虹桥迎宾三路隧道工程,首先建立了包括各种盾构施工参数影响的分析模型,并将不同施工参数情况下超孔压计算结果与实测值进行了对比,验证了模型的合理性。之后分析了开挖面推力、注浆压力、掘进速度、开挖面水头、隧道埋深以及土体渗透系数等参数对隧道周围最大超孔压的影响,获得了最大超孔压拟合计算公式,与现场实测和解析解的对比说明三维流固耦合计算可更合理分析盾构施工对孔压的扰动。同时,较大的超孔压值对应于较大的地表沉降,因此可将实测孔压值与数值计算结果进行对比,从而进行施工参数的调整。在上海虹桥迎宾三路隧道工程试验段的施工过程中,现场监测数据表明可根据孔压监测值调整施工参数,最终减小地面沉降。
    Abstract: It is a difficult problem to analyze the pore water pressure monitored in the field while tunnelling. Based on the tunnel constructed in Shanghai of China, a finite element model for shield tunnelling is established, which can study the effects of construction parameters. The model is validated by comparing the calculated results with the data monitored in the field. The effects of the construction parameters including the face thrust force, grouting pressure, excavation rate, water head at the face, cover depth and soil permeability on the maximum excess pore water pressure are analyzed. Then a fitting formula for the pore water pressure is obtained based on the calculated result. By comparison between the analytic solution and the data monitored in the field, it is obtained that the 3D coupled mechanical and hydraulic method is a good way to analyze the pore water pressure disturbed by shield tunnelling. The larger the maximum pore water pressure, the larger the ground settlement. So the pore water pressure monitored in the field can be used to analyze the fitness of the construction parameters. For Yingbinsanlu tunnelling project in Shanghai, the monitored pore water pressure is compared with the numerical results, and it is concluded that the construction parameters can be changed in time to decrease the ground settlement.
  • [1] 易宏伟,孙 钧. 盾构施工对软黏土的扰动机理分析[J]. 同济大学学报, 2000,28(3):277-282. (YI Hong-wei, SUN Jun. Mechanism analysis of disturbance caused by shield tunnelling on soft clays[J]. Journal of Tongji University, 2000, 28(3)
    [2] 蒋洪胜,侯学渊. 盾构掘进对隧道周围土层扰动的理论与实测分析[J]. 岩石力学与工程学报, 2003,22(9):1514-1520. (JIANG Hong-sheng, HOU Xue-yuan.
    Theoretical study and analysis of site observation on the influence of shield excavation on soft clays around tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(9): 1514-1520. (in Chinese))
    [3] 袁大军,尹 凡,王华伟. 超大直径泥水盾构掘进对土体的扰动研究[J]. 岩石力学与工程学报, 2009,28(10):2074-2080. (YUAN Da-jun, YIN Fan, WANG Hua-we.
    Study of soil disturbance caused by super-large diameter slurry shield tunnelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2074-2080. (in Chinese))
    [4] 肖 立,张庆贺,朱继文. 盾构施工引起的超孔隙水压力解析解[J]. 同济大学学报自然科学版, 2011,39(2):194-198. (XIAO Li, ZHANG Qing-he, ZHU Ji-wen.
    Analytical solution of excess pore water pressure caused by shield tunneling[J]. Journal of Tongji University (Natural Science), 2011, 39(2): 194-198. (in Chinese))
    [5] BOBET Antonio. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001,127(12):1258-1266.
    [6] ANAGNOSTOU G. The effect of tunnel advance rate on the surface settlements[C]// The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India. 2008.
    [7] 张 欣. 基于ABAQUS流固耦合理论的库岸滑坡稳定性分析[D]. 济南: 山东大学, 2005.(ZHANG Xin. Stability analysis of reservoir landslide based on the ABAQUS seepage-stresscoupling theory[D]. Jinan
    [8] EBERHARDT E. Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face[J]. International Journal of Rock Mechanics and Mining Sciences, 2001(38):499-518.
    [9] 朱以文,蔡元奇,徐 晗. ABAQUS 与岩土工程分析[M]. 香港: 中国图书出版社, 2005.(ZHU Yi-wen, CAI Yuan-qi, XU Han. ABAQUS and geotechnical engineering analysis[M]. Hongkong
    [10] THOMAS Kasper, GUNTHER Meschke. On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling[J]. Tunnelling and Underground Space Technology, 2006,21:160-171.
    [11] MROUEH H, HAHROURI S. A simplified 3D model for tunnel construction using tunnel boring machines[J]. Tunnelling and Underground Space Technology, 2008,23:38-45.
    [12] KOMIYA Kazuhito, SOGA Kenichi, AKAGI Hirokazu. Finite element modelling of excavation and advancement processes of a shield tunnelling machine[J]. Soils and Foundations, 1999,39(3):37-52.
    [13] GALLI G, GRIMALDI A, LEONARDI A. Three-dimensional modelling of tunnel excavation and lining[J]. Computers and Geotechnics, 2004,31:171-183.
    [14] KASPERZ Thomas, MESCHKEN G unther. A 3D finite element simulation model for TBM tunnelling in soft ground[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004,28:1441-1460.
    [15] 张 云,殷宗泽,徐永福. 盾构法隧道引起的地表变形分析[J]. 岩石力学与工程学报, 2002,21(3):388-392. (ZHANG Yun, YING Zong-ze, XU Yong-fu.
    Analysis on three-dimensional ground surface deformations due to shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(3): 388-392. (in Chinese))
    [16] XU Yong-fu, SUN De-an, SUN Jun. Soil disturbance of Shanghai silty clay during EPB tunnelling[J]. Tunnelling and Underground Space Technology, 2003,18:537-545.
    [17] SEUNG Han Kim, FULVIO Tonon. Face stability and required support pressure for TBM driven tunnels with ideal face membrane—Drained case[J]. Tunnelling and Underground Space Technology, 2010,25:526-542.
    [18] ANAGNOSTOU G. , KOVÁRI K. Face stability conditions with earth pressure balanced shields[J]. Tunnelling and Underground Space Technology, 1996,11(2):165-173.
    [19] 高 健,张义同. 盾构掘进速度对开挖面水头分布的影响[J]. 天津大学学报, 2010,43(4):287-292. (GAO Jian, ZHANG Yi-tong.
    Effect of shield advance velocity on the hydraulic head distribution around tunnel face[J]. Journal of Tianjin University, 2010, 43(4): 287-292. (in Chinese))
    [20] 缪林昌,王 非,吕伟华. 城市地铁隧道施工引起的地面沉降[J]. 东南大学学报, 2008(2):293-297. (MIAO Lin-chang, WANG Fei, LÜ Wei-hua.
    Ground surface settlement due to urban tunnel construction[J]. Journal of Southeast University (Natural Science Edition), 2008(2): 293-297. (in Chinese))
    [21] ARJNOI Ponlawich, JEONG Jae-Hyeung, KIM Chang-Yong. Effect of drainage conditions on porewater pressure distributions and lining stresses in drained tunnels[J]. Tunnelling and Underground Space Technology, 2009,24:376-389.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-27
  • 发布日期:  2013-03-06

目录

    /

    返回文章
    返回