• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和土弹塑性理论的数理基础——纪念黄文熙教授

李相崧

李相崧. 饱和土弹塑性理论的数理基础——纪念黄文熙教授[J]. 岩土工程学报, 2013, 35(1): 1-33.
引用本文: 李相崧. 饱和土弹塑性理论的数理基础——纪念黄文熙教授[J]. 岩土工程学报, 2013, 35(1): 1-33.
LI Xiang-song. Physical and mathematical bases of elastoplastic theories on saturated soils —In memory of Professor HUANG Wen-xi[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 1-33.
Citation: LI Xiang-song. Physical and mathematical bases of elastoplastic theories on saturated soils —In memory of Professor HUANG Wen-xi[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 1-33.

饱和土弹塑性理论的数理基础——纪念黄文熙教授  English Version

详细信息
    作者简介:

    李相崧(1943- ),男,香港科技大学土木及环境工程系荣休教授,著名土力学与岩土工程学者。1967年毕业于清华大学土木工程系结构工程专业,1982年获戴维斯加利福尼亚大学土木工程硕士学位,1990年获戴维斯加利福尼亚大学土木工程博士学位。主要从事土力学与本构模拟、土动力学与岩土地震工程以及岩土实验仪器等方面的研究。其论文与研究成果获国际与国内学术界大量引用,并在岩土地震工程界获得广泛应用。E-mail: xsli@ust.hk。

  • 中图分类号: TU43

Physical and mathematical bases of elastoplastic theories on saturated soils —In memory of Professor HUANG Wen-xi

  • 摘要: 大量土工问题是具有不规则甚至不确定边界条件的多维问题,面临的荷载不仅限于明确定义的单调荷载,还包括时变与随机往复荷载。而土作为一种天然材料,其力学行为极为复杂。多相性、非均质性、各向异性、非线性、加载路径与历史的影响、压力敏感性、体积变形与剪切变形的强耦合等等均为岩土工程师们通常面临和需要处理的问题。当太沙基在80年前以他的划时代的有效应力原理奠定现代土力学基础时,现代计算技术与相应的基础理论并不存在。因而除个别问题如一维固结问题与渗流问题在适度简化后存在解析解外,大量问题的处理必须基于高度简化的面向问题的集总参数模型。这些模型结合工程师的经验对传统土工结构往往能给出合理的或保守的强度指标,但很少能提高和深化我们对问题的内在认识,而且在面对许多现代新型土工结构时,这些传统方法往往显得力不从心。自20世纪中期以来,在应用力学领域内有着一系列重要发展:多相连续介质理论与塑性本构理论趋于成熟,有限元与差分计算方法已成为通用的偏微分场方程求解器,数字计算设备的能力也已获几何级数的提高。以临界状态理论为标志土力学本身也有着重要发展。这一切发展已有可能将土力学的问题纳入一个统一的理论框架内予以系统的处理,而且事实上许多土力学与岩土工程的研究及分析也已在不同程度上基于这样的一个框架,而其中土的本构模型是一个关键。笔者力图从基本的物理和数学原理出发来勾划出一个土弹塑性本构理论框架,其大部分内容都来自经典文献。为避免不确定性,以太沙基有效应力原理为前提,所以该框架仅对饱和土有效。
    Abstract: The physical and mathematical bases of the elastoplastic framework for constitutive modeling of soils are reviewed. Most of the contents are extracted from the existing literatures, but this paper represents an effort of presenting them in a focused manner, aided with explanatory comments. The review starts from the classical thermodynamic laws and the common hypothesis of internal variables, followed by the elastic-plastic decomposition of deformation and the notion of dissipation and locked energy. Then the concepts of the flow potential and the hypothesis of the maximum dissipation rate as well as the notions of yielding function, flow direction and plastic hardening are elucidated. The pressure sensitive elastic modeling is also discussed. Following the conceptual derivation of the basic ingredients of elastoplastic modeling, the issues on objectivity, anisotropic modeling, non-coaxial deformation and the critical state theory are addressed from a perspective of elementary physics and mathematics.
  • [1] NOLL W. A mathematical theory of the mechanical behavior of continuous media[J]. Archive for Rational Mechanics and Analysis, 1958,2:197-226
    [2] TRUESDELL C, TOUPIN R. The classical field theories[M]//FLUGGE S ed. Encyclopedia of Physics. Berlin: Springer-Verlag, 1960:226-793
    [3] PASSMAN S L, NUNZIATO J W, WALSH E K. A theory of multiphase mixtures[M]//TRUESDELL C ed. Rational Thermodynamics, 2nd Edition,New York:Springer-Verlag, 1984
    [4] CARATHÉODORY C. Investigations on the foundations of thermodynamics[J]. Mathematische Annalen, 1909,67:355-386
    [5] RICE J R. Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity[J]. Journal of the Mathematics and Physics of Solids, 1971,19:433-455
    [6] COLLINS I F, HOULSBY G T. Application of thermomechanical principles to the modeling of geotechnical materials[C]//Proc Royal Society, London. 1997, A 453: 1975-2001
    [7] LUBLINER J. On the thermodynamic foundations of non-linear solid mechanics[J]. International Journal of Non-Linear Mechanics, 1972,7:237-254
    [8] MAIER G, HUECKEL T. Nonassociated and coupled flow rules of elastoplasticity for geotechnical media[C]//Proc 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Special session 7, Constitutive relations for soils, 1977: 129-142.
    [9] RICE J R. Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanics[M]//ARGON A S, ed. Constitutive equations in Plasticity, MIT Press,1975:23-79
    [10] LASHKARI A, GOLCHIN A. A Critical state sand model with elastic-plastic coupling[M]//YANG Q, ZHANG J M, ZHENG H, et al, eds. Constitutive Modeling of Geomaterials. Berlin: Springer. 2012: 199-206.
    [11] RICE J R. On the structure of stress-strain relations for time-dependent plastic deformation in metals[J]. Journal of Applied Mechanics, ASME,1970, 37:728-737
    [12] CRISTESCU N. Dynamic plasticity[M]. Amsterdam: North- Holland, 1967.
    [13] LUBARDA V A. Elastoplastic theory[M]. Boca Raton: CRC Press, 2002.
    [14] ZIEGLER H. An introduction to thermomechanics[M]. 2nd ed. Amsterdam: North-Holland. 1983.
    [15] HOULSBY G T, PUZRIN A M. Rate-dependent plasticity models derived from potential functions[J]. Journal of Rheology, 2002,46(1):113-126
    [16] ROSCOE K H, BURLAND J B. On the generalized stress-strain behavior of ‘wet’ clay[M]//HEYMAN J, LECKIE F, eds. Engineering Plasticity. Cambridge: Cambridge University Press. 1968: 535-609.
    [17] COLLINS I F, KELLY P A. A thermomechanical analysis of a family of soil models[J]. Géotechnique, 2002,52(7):507-518
    [18] DRUCKER D C. A more fundamental approach to plastic stress-strain relations[C]//1st US National Congress on Applied Mechanics, ASME. 1951: 487-491.
    [19] ILYUSHIN A A. On a postulate of plasticity[M]. Prikl Mat Mekh, 1961,25:503-507
    [20] KOITER W. Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface[J]. Quarterly of Applied Methematics, 1953,11:350-354
    [21] SANDERS J L. Plastic stress-strain relations based on infinitely many plane loading surfaces[C]//NAGHDI P M, ed. Proc 2nd US National Congress of Applied Mechanics ASME, 1954:455-460
    [22] HILL R. Aspects of invariance in solid mechanics[J]. Advances in Applied Mechanics, 1978,18:1-75
    [23] POOROSHASB H B, HOLUBEC I, SHERBOURNE A N. Yielding and flow of sand in triaxial compression, Parts 2 and 3[J]. Canadian Geotechnical Journal, 1967,4:376-397
    [24] LADE P V, DUNCAN J M. Cubical triaxial tests on cohesionless soil[J]. Journal of Soil Mechanics and Foundation Division, ASCE,1973, 99(SM10):793-812
    [25] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000,50(4):449-460
    [26] HILL R. The mathematical theory of plasticity[M]. London: Oxford University Press, 1950.
    [27] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979,29(1):47-65
    [28] MROZ Z, NORRIS V A, ZIENKIEWICZ O C. An anisotropic hardening model for soils and its application to cyclic loading[J]. International journal for Numerical and Analytical Methods in Geomechanics, 1978,2:203-221
    [29] MROZ Z. On the description of anisotropic work hardening[J]. Journal of the Mechanics and Physics of Solids, 1967,15:163-175
    [30] IWAN W D. On a class of models for the yielding behavior of continuous and composite systems[J]. Journal of Applied Mechanics, ASME,1967, 34(3):612-617
    [31] DAFALIAS Y F, POPOV E P. A model of nonlinearly hardening materials for complex loading[J]. Acta Mechanica, 1975,21(3):173-192
    [32] KRIEG R D. A practical two-surface plasticity theory[J]. Journal of Applied Mechanics, ASME,1975, 42:641-646
    [33] PREVOST J H. Mathematical modeling of monotonic and cyclic undrained clay behavior[J]. International journal for Numerical and Analytical Methods in Geomechanics, 1977,1(2):195-216
    [34] PREVOST J H. Plasticity theory for soil stress-strain behavior[J]. Journal of Engineering Mechanics, ASCE,1978, 104(5):1177-1194
    [35] WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, ASCE,1990, 116(5):983-1001
    [36] TRUESDELL C. Hypo-elasticity[J]. Journal of Rational Mechanics and Analysis, 1955(4):83-133
    [37] TRUSDELL C, NOLL W. The non-linear field theories of mechanics[C]//FLUGGE S, ed. Encyclopedia of Physics. Berlin: Springer-Verlag, 1965.
    [38] RICHART F E Jr, HALL J R, WOODS R D. Vibrations of soils and foundations[M]//International Series in Theoretical and Applied Mechanics. Englewood Cliffs: Prentice-Hall, Inc. 1970
    [39] ZYTYNSKI M, RANDOLPH M F, NOVA R,et al. On modeling the unloading-reloading behavior of soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1978(2):87-93
    [40] EINAV I, PUZRING M. Pressure-dependent elasticity and energy conservation in elastoplastic models for soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004, 130(1):81-92
    [41] NOLL W. On material frame-indifference. Department of Mathematical Sciences, Carnegie Mellon University,Paper 580. http://repository.cmu.edu/math/580. 1995
    [42] WANG C C. A new representation theorem for isotropic functions: An answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions. I. Scalar-valued isotropic functions[J]. Archive for Rational Mechanics and Analysis, 1970a(36):166-197
    [43] WANG C C. A new representation theorem for isotropic functions: An answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions. II. Vector-valued isotropic functions, symmetric tensor-valued isotropic functions,and skew-symmetric tensor-valued isotropic functions. Archive for Rational Mechanics and Analysis, 1970b, 36:198-223
    [44] SMITH G. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[J]. International Journal of Engineering Science, 1971(9):899-916
    [45] SPENCER A. Theory of invariants[M]//ERINGEN C, ed. Continuum Physics. New York: Academic Press, 1971.
    [46] DAFALIAS Y F. The plastic spin[J]. Journal of Applied Mechanics, ASME. 1985,52(4):865-871
    [47] DAFALIAS Y F. Plastic spin: necessity or redundancy? [J] International Journal of Plasticity, 1998,14(9):909-931
    [48] LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, ASCE,2012, 138(3):263-275
    [49] ARTHUR J R F, CHUA K S, DUNSTAN T. Induced anisotropy in a sand[J]. Géotechnique, 1977,27(1):13-30
    [50] ARTHUR J R F, KOENDERS M A, WONG R K S. Anisotropy in particle contacts associated with shearing in granular media[J]. Acta Mechanica, 1986(64):20-29
    [51] GUTIERREZ M, ISHIHARA K, TOWHATA I. Flow theory for sand rotation of principal stress direction[J]. Soils and Foundations, 1991,31:121-132
    [52] RUDNICKI J W, RICE J R. Conditions for the localization of the deformation in pressure sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975,23:371-394
    [53] PAPAMICHOS E, VARDOULAKIS I, HAN C. Noncoaxial flow theory of plasticity: shear failure prediction in sand[M]//KOLYMBAS D, ed. Modern Approaches to Plasticity. Amsterdam: Elsevier, 1992:585-598
    [54] DAFALIAS Y F. Bounding surface plasticity, I. mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, ASCE,1986, 112(9):966-987
    [55] CASAGRANDE A. Characterestics of cohesionless soils affecting the stability of earth fills[J]. Journal of Boston Society of Civil Engineers, 1936,23:257-276
    [56] ROSCOE K H, SCHOFIELD A N, WROTH C P. On the yielding of soils[J]. Géotechnique, 1958,8(1):22-53
    [57] SCHOFIELD A N, WROTH C P. Critical state soil mechanics[M]. London: McGraw-Hill, 1968.
    [58] BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985,35(2):99-112
    [59] NAKATA Y, HYODO M, MURATA H,et al. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998,38(2):115-128
    [60] YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998,38(3):179-188
    [61] ODA M. Initial fabrics and their relations to mechanical properties of granular materials[J]. Soils and Foundations, 1972a, 12(1):17-36
    [62] ODA M. The mechanism of fabric changes during compressional deformation of sand[J]. Soils and Foundations, 1972b, 12(2):1-18
    [63] MASSON S, MARTINEZ J. Micromechanical analysis of the shear behavior of a granular material[J]. Journal of Engineering Mechanics, ASCE,2001, 127(10):1007-1016
    [64] LI X, LI X. S. Micro-macro quantification of the internal structure of granular materials[J]. Journal of Engineering Mechanics, ASCE,2009, 135(7):641-656
    [65] ZHAO J D, GUO N, LI X S. Unique quantification of critical state in granular media considering fabric anisotropy[M]//YANG Q, ZHANG J M, ZHENG H, et al, eds. Constitutive Modeling of Geomaterials. Berlin: Springer. 2012: 247-252.
计量
  • 文章访问数:  1465
  • HTML全文浏览量:  8
  • PDF下载量:  1919
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-02
  • 发布日期:  2013-01-31

目录

    /

    返回文章
    返回