• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于遗传-GRNN在深基坑地连墙测斜预测中的研究

王雨, 刘国彬, 屠传豹

王雨, 刘国彬, 屠传豹. 基于遗传-GRNN在深基坑地连墙测斜预测中的研究[J]. 岩土工程学报, 2012, 34(suppl): 167-171.
引用本文: 王雨, 刘国彬, 屠传豹. 基于遗传-GRNN在深基坑地连墙测斜预测中的研究[J]. 岩土工程学报, 2012, 34(suppl): 167-171.
WANG Yu, LIU Guo-bin, TU Chuan-bao. Deformation prediction for deep excavations based on genetic algorithms-GRNN[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 167-171.
Citation: WANG Yu, LIU Guo-bin, TU Chuan-bao. Deformation prediction for deep excavations based on genetic algorithms-GRNN[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 167-171.

基于遗传-GRNN在深基坑地连墙测斜预测中的研究  English Version

详细信息
    作者简介:

    王 雨(1988– ),女,北京人,硕士研究生,同济大学隧道及地下建筑工程专业。

  • 中图分类号: TU47

Deformation prediction for deep excavations based on genetic algorithms-GRNN

  • 摘要: 基坑工程由于受多种因素的影响,目前已成为岩土工程中的重点和难点。在基坑工程施工中,需要根据现场实际情况、周围环境、建筑安全等级等对变形进行严格控制。通过现场监测的深基坑围护结构变形信息资料,对实测数据进行整理和分析,利用神经网络对围护结构的变形做出预测的智能化施工成为基坑工程的发展趋势之一。研究了一种基于遗传算法的广义回归神经网络学习算法。该算法运用遗传算法寻找广义回归神经网络唯一参数光滑因子的最优解,将最优解赋予广义回归神经网络进行预测。在时间序列预测中,工程实例计算证明了遗传–广义回归神经网络预测的有效性和可行性,为时间序列预测提供了一种新途径。
    Abstract: Affected by various factors, the deep excavation has become one of the key problems in geotechnical engineering. In practice, the deformation must be controlled rigorously according to the actual situation, surrounding environment and building safety grade. The intelligent construction has become one of the tendencies of deep excavation engineering, that is, it is to predict the deformation of retaining structures by neural network by collecting and analyzing monitoring data which record the deformation information. The generalized regression neural network (GRNN) is studied based on the genetic algorithm (GA). In this algorithm, GA is adopted to search the optimal smooth factor which is the only factor of GRNN, and then the GA-GRNN is used for prediction. The simulation experiment indicates that the proposed method is effective in time series prediction.
  • [1] 刘国彬, 王卫东. 基坑工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2009: 183–226. (LIU Guo-bin, WANG Wei-dong. Excavation engineering manual[M]. 2nd ed. Beijing: China Architecture & Building Press, 2009: 183–226. (in Chinese))
    [2] 熊孝波, 桂国庆, 郑明新, 等. 基于皮尔–遗传神经网络的深基坑施工变形预测[J]. 岩土工程学报, 2008, 30(增刊): 220–224. (XIONG Xiao-bo, GUI Guo-qing, ZHENG Ming-xin, et al. Deformation prediction for deep foundation pits based on pearl curve and genetic neural network[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S0): 220–224. (in Chinese))
    [3] 王玉雯, 陈颖辉, 师庭飞. 改进的BP网络在深基坑变形预报中的应用[J]. 科学技术与工程, 2010, 10(15): 3791–3794. (WANG Yu-wen, CHEN Yin-hui, SHI Ting-fei. The application for improved BP network in deformation monitoring and prediction caused by deep excavation[J]. Science Technology and Engineering, 2010, 10(15): 3791–3794. (in Chinese))
    [4] 赵启嘉. 基于动态递归神经网络及相空间重构理论的深基坑工程变形预测研究[D]. 上海: 同济大学, 2008. (ZHAO Qi-jiao. Research on deformation prediction of deep excavation by recurrent neural network and phase space reconstruction[D]. Shanghai: Tongji University, 2008. (in Chinese))
    [5] 袁金荣, 池毓蔚, 刘学增. 深基坑墙体位移的神经网络动态预测[J]. 同济大学学报, 2000, 28(3): 220–224. (YUAN Jin-rong, CHI Yu-wei, LIU Xue-zeng. Dynamic prediction on displacement of diaphram wall in deep foundation excavation engineering using artificial neural networks[J]. Journal of Tongji University, 2000, 28(3): 220–224. (in Chinese))
    [6] 刘勇健, 李彰明, 张建龙, 等. 基于遗传-神经网络的深基坑变形实时预报方法研究[J]. 岩石力学与工程学报, 2004, 23(6): 1010–1014. (LIU Yong-jian, LI Zhang-ming, ZHANG Jian-long, et al. Real time prediction method based on genetic algorithm and neural network for deformation caused by deep excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6): 1010–1014. (in Chinese))
    [7] 熊孝波, 桂国庆, 郑明新, 等. 基于免疫RBF神经网络的深基坑施工变形预测[J]. 岩土力学, 2008, 28(增刊): 598–602. (XIONG Xiao-bo, GUI Guo-qing, ZHENG Ming-xin, et al. Research on deformation prediction for deep foundation pit based on the artificial immune RBF neurai network[J]. Rock and Soil Mechanics, 2008, 28(S0): 598–602. (in Chinese))
    [8] 林 鸣, 徐 伟. 深基坑工程信息化施工技术[M]. 北京: 中国建筑工业出版社, 2006. (LIN Ming, XU Wei. Deep foundation informatization construction technology[M]. Beijing: China Architecture & Building Press, 2006 (in Chinese))
    [9] 谢秀栋, 方建瑞, 李志高. 基于遗传算法的SMW围护结构水泥土刚度系数计算[J]. 岩土工程学报, 2008, 28(增刊): 1422–1424. (XIE Xiu-dong, FANG Jian-guo, LI Zhi-gao. Computation on rigidity coefficient of cemented-soil based on genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2008, 28(S0): 1422–1424. (in Chinese))
    [10] 袁金荣, 赵福勇. 基坑变形预测的时间序列分析[J]. 土木工程学报, 2001, 34(6): 55–59. (YUAN Jin-rong, ZHAO Fu-yong. Precdicting deformation of foundation pit using ANN[J]. China Civil Engineering Journal, 2001, 34(6): 55–59. (in Chinese))
    [11] HAGAN Martin T, DEMUTH Howard B, BEALE Mark H. 神经网络设计[M]. 北京: 机械工业出版社, 2002. (HAGAN Martin T, DEMUTH Howard B, BEALE Mark H. Neural network design[M]. Beijing: China Machine Press, 2002. (in Chinese))
    [12] 张德丰. MATLAB神经网络应用设计[M]. 北京: 机械工业出版社, 2009. (ZHANG De-feng. MATLAB neural network application design[M]. Beijing: China Machine Press, 2009. (in Chinese))
    [13] 雷英杰, 张善文, 李续武, 等. MATLAB遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2005. (LEI Ying-jie, ZHANG Shan-wen, LI Xu-wu, et al. MATLAB genetic algorithm toolbox and its application[M]. Xi'an: Xidian University Press, 2005. (in Chinese))
    [14] NARENDRA B S, SIVAPULLAIAH P V, SURESH S, et al. Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study[J]. Computers and Geotechnics, 2006, 33: 196–208.(本文责编 李运辉)
计量
  • 文章访问数:  1217
  • HTML全文浏览量:  1
  • PDF下载量:  581
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-23
  • 发布日期:  2012-11-12

目录

    /

    返回文章
    返回