• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于黏聚区域模型的边坡渐进破坏过程强化有限元分析

凌道盛, 涂福彬, 卜令方

凌道盛, 涂福彬, 卜令方. 基于黏聚区域模型的边坡渐进破坏过程强化有限元分析[J]. 岩土工程学报, 2012, 34(8): 1387-1393.
引用本文: 凌道盛, 涂福彬, 卜令方. 基于黏聚区域模型的边坡渐进破坏过程强化有限元分析[J]. 岩土工程学报, 2012, 34(8): 1387-1393.
LING Dao-sheng, TU Fu-bin, BU Ling-fang. Enhanced finite element analysis of progressive failure of slopes based on cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1387-1393.
Citation: LING Dao-sheng, TU Fu-bin, BU Ling-fang. Enhanced finite element analysis of progressive failure of slopes based on cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1387-1393.

基于黏聚区域模型的边坡渐进破坏过程强化有限元分析  English Version

基金项目: 浙江省自然科学基金重点项目(LZ12E09001);高等学校博士学科点专项科研基金项目(20100101110027)
详细信息
    作者简介:

    凌道盛(1968– ),男,教授,主要从事土动力学、计算土力学方面的研究。

  • 中图分类号: TU433

Enhanced finite element analysis of progressive failure of slopes based on cohesive zone model

  • 摘要: 剪切带非连续变形描述及剪切带扩展过程模拟是边坡渐进破坏过程分析的关键,基于黏聚区域模型及强化有限单元法提出一种剪切带渐进扩展过程模拟的有限元分析方法。首先,将剪切带两侧相对变形分解成分别由常规应变和附加应变确定的相对位移,提出具有弱非连续变形特征的剪切带变形等效强非连续变形描述方法,并采用黏聚区域模型表征剪切带应力和附加相对位移间的软化本构关系。其次,基于强化有限单元法描述强非连续变形,并构造相应的无厚度剪切带单元。在此基础上,提出剪切带渐进扩展模拟的有限元算法。算例表明,此方法不仅能够很好地模拟剪切带的应变软化特性,而且有效地克服了常规剪切带模拟具有的网格敏感性问题。
    Abstract: The description of discontinuous deformation and the simulation of shear band propagation are the key to the progressive failure analysis of slopes. A novel numerical method is presented based on the cohesive zone model and the enhanced finite element method. Firstly, the deformation of the shear band is resolved into the relative displacements determined by regular strain and additional strain respectively, a description which equally replaces the weak discontinuous deformation with strong form is adopted, and the shear band stress-additional relative displacement softening constitutive relation is represented by means of the cohesive law. Secondly, the relative displacement is described by the enhanced finite element method, and corresponding shear band element without thickness is constructed. Finally, a finite element algorithm for modeling the propagation of shear bands is proposed. Through numerical examples, it is demonstrated that the proposed method is not only able to consider the softening character of shear band, but also overcomes the mesh sensitivity in modeling the standard shear band.
  • [1] 王庚荪, 孔令伟, 郭爱国, 等. 含剪切带单元模型及其在边坡渐进破坏分析中的应用[J]. 岩石力学与工程学报, 2005, 24(21): 3852–3857. (WANG Geng-sun, KONG Ling-wei, GUO Ai-guo, et al. Element model with shear band and its application to progressive failure analysis of slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(21): 3852–3857. (in Chinese))
    [2] TANG H X, WANG D G. Finite element analysis of strain localization problems for slope based on Cosserat continuum model[J]. Geotechnical Engineering for Disaster Mitigation and Rehabilitation, 2008, 5: 572–577.
    [3] RUDNICKI J W, RICE J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of Mechanics and Physics of Solids, 1975, 23(6): 371–394.
    [4] 吕玺琳. 岩土材料应变局部化理论预测及数值模拟[D]. 上海: 同济大学, 2008. (L? Xi-lin. Theoretical prediction and numerical modeling of strain localization in geomaterials[D]. Shanghai: Tongji University, 2008. (in Chinese))
    [5] NEEDLEMAN A. Material rate dependence and mesh sensitivity in localization problems[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 67(1): 69–85.
    [6] de BORST R, MUHLAUS H B. Gradient-dependent plasticity: formulation and algorithmic aspects[J]. International Journal for Numerical Methods in Engineering, 1992, 35(3): 521–539.
    [7] PIJAUDIER-CABOT G, BAZANT Z P. Non-local damage theory[J]. Journal of Engineering Mechanics, ASCE, 1987, 113(10): 1512–1533.
    [8] PIETRUSZCZAK S, MROZ Z. Finite element analysis of deformation of strain softening materials[J]. International Journal for Numerical Methods in Engineering, 1981, 17(3): 327–334.
    [9] 钱建固, 吕玺琳, 黄茂松. 平面应变状态下土体的软化特性与本构模拟[J]. 岩土力学, 2009, 30(3): 617–622. (QIAN Jian-gu, L? Xi-lin, HUANG Mao-song. Softening characteristics of soils and constitutive modeling under plane strain condition[J] Rock and Soil Mechanics, 2009, 30(3): 617–622. (in Chinese))
    [10] SANBORN S E, PREVOST J H. Frictional slip plane growth by localization detection and the extended finite element method (XFEM)[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 35(11): 1278–1298.
    [11] TIJSSENS MGA, VAN der Giessen E, SLUYS L J. Modeling of crazing using a cohesive surface methodology[J]. Mechanics of Materials, 2000, 32(1): 19–35.
    [12] ROE K L, SIEGMUND T. An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering Fracture Mechanics, 2003, 70(2): 209–232.
    [13] YANG B, MALL S, RAVI-CHANDAR K. A cohesive zone model for fatigue crack growth in quasibrittle materials[J]. International Journal of Solids and Structures, 2001, 38(22/23): 3927–3944.
    [14] 石根华. 数值流形方法与非连续变形数值分析新方法[M]. 裴觉民, 译. 北京: 清华大学出版社, 1997. (SHI Gen-hua. Numerical manifold method[M]. PEI Jue-min, translator. Beijing: Tsinhua University Press, 1997. (in Chinese))
    [15] 杨庆生, 杨 卫. 断裂过程的有限元模拟[J]. 计算力学学报, 1997, 14(4): 407–412. (YANG Qing-sheng, YANG Wei. Finite element simulation of fracture process[J]. Chinese Journal of Computational Mechanics, 1997, 14(4): 407–412. (in Chinese))
    [16] 黄茂松, 钱建固, 吴世明. 土坝动力应变局部化与渐进破坏的自适应有限元分析[J]. 岩土工程学报, 2001, 23(3): 306–310. (HUANG Mao-song, QIAN Jian-gu, WU Shi-ming. An adaptive finite element method for strain localization and progressive failure of earth dam under earthquake[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 306–310. (in Chinese))
    [17] DAUX C, MOES N, DOLBOW J, et al. Arbitrary branched and intersecting cracks with the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2000, 48(12): 1741–1760.
    [18] LING D S, YANG Q D, COX B. An augmented finite element method for modeling arbitrary discontinuities in composite materials[J]. International Journal of Fracture, 2009, 156(1): 53–73.
    [19] 凌道盛, 徐小敏, 陈云敏. 数学网格和物理网格分离的有限单元法(Ⅰ): 基本理论[J]. 计算力学学报, 2009, 26(3): 401–407. (LING Dao-sheng, XU Xiao-min, CHEN Yun-min. An enhanced finite element method with separate mathematical and physical mesh(Ⅰ): theory[J]. Chinese Journal of Computational Mechanics, 2009, 26(3): 401–407. (in Chinese))
    [20] 凌道盛, 韩 超, 陈云敏. 数学网格和物理网格分离的有限单元法(Ⅱ): 黏聚裂纹扩展问题中的应用[J]. 计算力学学报, 2009, 26(3): 408–414. (LING Dao-sheng, HAN Chao, CHEN Yun-min. An enhanced finite element method with separate mathematical and physical mesh(Ⅱ): application in propagation of cohesive crack[J]. Chinese Journal of Computational Mechanics, 2009, 26(3): 408–414. (in Chinese))
    [21] VERMEER P. A simple shear band analysis using compliances[C]// Proceeding of IUTAM Conference on Deformation and Failure of Granular Materials. Delft: Balkema, 1982.
    [22] HICHER P Y, WAHYUDI H, TESSIER D. Microstructural analysis of strain localization in clay[J]. Computers and Geotechnics, 1994, 16(3): 205–222.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-21
  • 发布日期:  2012-08-19

目录

    /

    返回文章
    返回