• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水合物形成对含水合物砂土强度影响

颜荣涛, 韦昌富, 魏厚振, 田慧会, 吴二林

颜荣涛, 韦昌富, 魏厚振, 田慧会, 吴二林. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240.
引用本文: 颜荣涛, 韦昌富, 魏厚振, 田慧会, 吴二林. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240.
YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, TIAN Hui-hui, WU Er-lin. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234-1240.
Citation: YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, TIAN Hui-hui, WU Er-lin. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234-1240.

水合物形成对含水合物砂土强度影响  English Version

基金项目: 国家自然科学基金项目(41102199);中国科学院“百人计划”择优支持项目
详细信息
    作者简介:

    颜荣涛(1984– ),男,湖北仙桃人,博士研究生,主要从事含天然气水合物沉积物力学特性研究。E-mail: yrt301@163.com。

  • 中图分类号: TU411

Effect of hydrate formation on mechanical strength of hydrate-bearing sand

  • 摘要: 采用非饱和成样法(A法)和饱和试样气体扩散制样法(B法)两种试验室方法,合成了含CO2水合物的砂土试样,并采用改造过的三轴剪切试验仪完成了相应的三轴剪切试验。实验结果表明:A法制得试样强度和刚度随水合物饱和度增大而增大,且相当敏感;而B法制得试样在水合物饱和度为19.44%与纯砂土的力学特征差别很小,在较高饱和度(26.73%)时,含水合物砂土的强度和刚度就有了较为明显提高;由此可以得出含水合物砂土的强度特征是水合物含量和水合物于砂土中赋存状态联合决定的;同时也发现随着水合物饱和度的增大,试样的剪胀性越来越明显。最后,通过对A法制得试样的强度参数分析表明:含水合物砂土的黏聚力随饱和度的增大而提高,而摩擦角基本不变。
    Abstract: In order to evaluate the effect of hydrate formation on the mechanical strength of hydrate-bearing sand, a series of triaxial compression tests are conducted on the samples prepared by means of two different methods, namely, the partial water saturation method (A method) and the dissolved gas method (B method). The experimental results show that the strength and stiffness of the samples formed by A method increase sensitively with the saturation of hydrate, whereas those prepared by B method keep almost constant when the saturation of hydrate is less than 19%, and then increase significantly when the saturation of hydrate is higher than 27%. The results imply that the mechanical behaviors of the hydrate-bearing sand depend upon both the content and the distribution of hydrate in the pores. The hydrate-bearing samples tend to dilate when the saturation of hydrate increases. In addition, an analysis of experimental results of the samples prepared by the A method shows that the cohesion of the samples increases with the saturation of hydrate, while the frictional angle keeps practically constant.
  • [1] KVENVOLDEN K A, LORENSON T D. Global occurrence of gas hydrates[C]// Proceedings of the Eleventh International Offehore and Polar Engineering Conference, 2001: 462–467.
    [2] SULTAN N, COCHONAT P, FOUCHER J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213(1/2/3/4): 379–401.
    [3] WINTERS W J, PECHER I A, WAITE W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate[J]. American Mineralogist, 2004, 89(8-9): 1221–1227.
    [4] MASUI A, HANEDA H, OGATA Y, et al. Effects of methane hyd- rate formation on shear strength of synthetic methane hydrate sediments[C]// Proceedings of the Fifteenth International Off-shore and Polar Engineering Conference, 2005(1): 364–369.
    [5] YUN T S, SANTAMARINA J C, RUPPEL C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research-Solid Earth, 2007, 112(B4): B04106.
    [6] MASUI A, MIYAZAKI K, HANEDA H, et al. Mechanical characteristics of natural and artificial Gas hydrate bearing sediments[C]// Proceedings of the 6th International Conference on Gas Hydrates (ICGH2008), Vancouver, 2008.
    [7] 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069–3074. (ZHANG Xu-hui, WANG Shu-yun, LI Qing-ping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2010, 31(10): 3069–3074. (in Chinese))
    [8] WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(RG4003).
    [9] ZATSEPINA O Y, BUFFETT B A. Experimental study of the stability of CO2-hydrate in porous medium[J]. Fluid Phase Equilibria, 2001, 192: 85–102.
    [10] ZHONG Y, ROGERS R E. Surfactant effects on gas hydrate forma-tion[J]. Chemical Engineering Science, 2000, 55(19): 4175–4187.
    [11] WAITE W F, WINTERS W J, MASON D H. Methane hydrate formation in partially water-saturated Ottawa sand[J]. American Mineralogist, 2004, 89(8-9): 1202–1207.
    [12] STERN L A, KIRBY S H, DURHAM W B. Polycrystalline methane hydrate: Synthesis from superheated ice and low- temperature mechanical properties[J]. Energy Fuels, 1998, 12: 201–211.
    [13] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Basic research on the mechanical behavior of methane hydrate- sediments mixture[J]. Soils and Foundations, 2005, 45(1): 75–85.
    [14] KONO H O, NARASIMHAN S, SONG F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing[J]. Powder Technology, 2002, 122(2-3): 239–246.
    [15] EBINUMA T, KAMATA Y, MINAGAWA H, et al. Mechanical properties of sandy sediment contain- ing methane hydrate[C]// Fifth International Conference on Gas Hydrates, Tapir Acad., Trondheim, 2005: 958–961.
    [16] DVORKIN J, PRASAD M, SAKAI A, et al. Elasticity of marine sediments: Rock physics modeling[J]. Geophys Res Lett, 1999, 26: 1781–1784.
    [17] BERGE L I, JACOBSEN K A, SOLSTAD A. Measured acoustic wave velocities of R11(CCl3F) hydrate samples with and without sand as a function of hydrate concentration[J]. J Geophy Res, 1999, 104: 15415–15424.
    [18] GROZIC J L H, GHIASSIAN H. Undrained shear strength of methane hydrate-bearing sand: preliminary laboratory results[C]// 63rd Canadian Geotechnical Conference & 6th Canadian Permafrost Conference, Alberta, 2010: 459–466.
    [19] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-03
  • 发布日期:  2012-07-24

目录

    /

    返回文章
    返回